Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke Scientists Overcome Immune Resistance In Dendritic Cell Vaccines For Cancer

05.04.2004


Scientists have discovered why dendritic cell vaccines do not attack cancer as forcefully as expected, and they have demonstrated how to overcome this constraint by bolstering the vaccines’ tumor-seeking machinery.



The findings, published in the April 4, 2004, issue of Nature Immunology, present a novel method of equipping dendritic cells so they can activate the immune system to fight against cancers, said the researchers from the Duke Comprehensive Cancer Center and the departments of medicine and immunology at Duke University Medical Center.

Dendritic cells are the "private investigators" of the immune system, detecting foreign proteins in the body -- for example from bacteria and viruses -- and presenting them to "fighter" T-cells for destruction. Scientists turn dendritic cells into cancer vaccines by mixing them with genetic material from the patient’s tumor and infusing the treated cells back into the patient. The dendritic cells present the tumor particles – called antigens – to the fighter T cells, as though pointing out the enemy to a battalion of soldiers.


"Dendritic cell vaccines have shown promise in battling cancers in laboratory studies, but they have not met with quite the success in the clinical trials that laboratory studies suggest they should," said Yiping Yang, M.D., Ph.D., assistant professor of medicine and immunology, the lead author and principal investigator of the study. "Our study highlights what element is missing in dendritic cell vaccines that prevents them from activating the immune system, and we’ve shown how to insert that element."

The major problem, said Yang, is that cancer cells are wily invaders, camouflaging themselves as part and parcel of the body in order to escape detection by the immune system. Dendritic cells present the tumor antigen to T-cells, yet T-cells are curiously tolerant to the antigen and fail to act on its threat.

Yang and his team studied why this tolerance occurs by creating an animal model that mimics the same T-cell tolerance that occurs in cancer patients. They compared the behavior of dendritic cell vaccines in the mice against that of viral vaccines, which have their own limitations but seem to engage T-cell aggression without difficulty.

"We knew there was something unique to viral and bacterial pathogens that mammalian cells don’t have," said Yang.

The scientists found that dendritic cell vaccines failed to remove the "brakes" from fighter T-cells that would allow them to attack the cancer. These brakes are known as regulatory T-cells, and they restrain excessive or unwarranted T-cell aggression.

Yang and his team theorized that removing the regulatory T-cells would remove the brakes from the fighter T-cells. Yet removing all restraints could provoke T-cells to attack the body indiscriminately, potentially causing auto-immune reactions.

In contrast, viral vaccines naturally override these cellular brakes as needed, and Yang’s team determined why that occurs: viruses contain their own unique and foreign molecules that mark them as invaders in the body.

These foreign molecules are known as "pathogen-associated molecule patterns" (PAMPs), and they are unique to viruses, bacteria and other pathogens. They reside on the coating of the bacterium or virus and are separate and apart from the cancer antigen, said Yang. When the viral vaccine presents the tumor antigen to fighter T-cells (via the patient’s dendritic cells), it is also presenting its own PAMPs. The dual signaling – in actuality there are three signals from dendritic cells – provide the needed stimulus to energize T cells into action, said Yang.

"Dendritic cells are viewed by the body as self – even when they are loaded with tumor antigen – because the antigen itself is not enough to provoke fighter T cells to act," said Yang. "If you mix dendritic cells with tumor antigen and PAMPs, then you produce a more potent signal that can break T-cell tolerance."

Further, Yang identified the site on the surface of dendritic cells that recognizes the PAMPs and prompts them to silence regulatory T-cells. The sites are called Toll-like receptors, and activating them is critical to temporarily silencing regulatory T-cells.

"We don’t know the specific chain of events that Toll-like receptors activate inside dendritic cells to temporarily silence regulatory T-cells," said Yang. "But we hypothesize that signals enter through the Toll-like receptors and trigger the release of critical cytokines that tell regulatory T-cells to lie dormant."

Viral vaccines naturally accomplish this task on their own, yet they present their own complex array of limitations, said Yang. First, viral vaccines must be laced with the precise strands of tumor DNA (called tumor-specific antigens) that will spark recognition among the fighter T-cells. However, the tumor-specific antigens for most cancers are unknown, and finding them can be extraordinarily time-consuming and costly. In contrast, dendritic cells can be laced with tumor proteins or RNA that already contain tumor-specific antigens – a much easier task than isolating the antigens, said Yang. Second, viral vaccines must be stripped of their potential to cause illness in the patient.

"We want to merge the strengths of viral vaccines with the ease of using a patient’s own immune system to wage war against the cancer," said Yang.

Thus far, Yang and his team have tested the concept successfully in animals and plan to test the viral vaccines and the bolstered dendritic cell vaccines in lymphoma patients within the next several years.

Becky Levine | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7502

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>