Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic surgery for young heart patients shortens hospital stay and speeds recovery, study indicates

28.01.2004


Operation time somewhat longer, but benefits seen



In the first-ever direct comparison of robot-assisted and traditional surgery for children’s heart defects, University of Michigan surgeons report that the robot’s help reduces patients’ recuperation time and surgery-related trauma and scarring, while extending the length of the operation by just over half an hour.

Their finding suggests that the minimally invasive surgical techniques made possible by the surgeon-controlled, camera-guided robot system can give the same surgical result as open-chest techniques, with less impact on the young patient’s body.


And although the study group was small, the finding demonstrates that robot-assisted surgery may be a good option for certain defects.

U-M Congenital Heart Center pediatric heart surgeons will present their results here on Jan. 28 at the annual meeting of the Society of Thoracic Surgeons, as part of a workshop for other surgeons on robot-assisted options for young heart patients.

Says surgeon Richard Ohye, M.D., "Robot-assisted surgery has already shown quite a bit of promise in the adult population, including adults who have congenital heart anomalies. But we feel from our experience that it can be used on many pediatric patients weighing more than 10 kilograms, and can reduce hospital stays, operative trauma, cosmetic impact and overall recovery time. And we found it does so with an acceptable impact on a patient’s time in the OR."

Despite the added expense of operating room time and the robot itself, Ohye feels that the machine will more than offset its costs over time by reducing the time a child spends in the hospital after surgery, the complications he or she will face during recovery, and his or her parents’ time away from work.

Ohye and U-M pediatric cardiac surgery colleagues Edward Bove, M.D. and Eric Devaney, M.D. performed the robot-assisted and open surgeries compared in the report. Ohye and Devaney began using the robot at the U-M’s C.S. Mott Children’s Hospital in November 2002, one year after the U-M Health System acquired the $1 million da Vinci robot system.

The surgeons use the robot for a small minority of the more than 900 surgical procedures they perform each year on U-M Congenital Heart Center patients, but they expect the number will grow in the future.

The system has two main components: a seven-foot-high robot with three cable-driven that hold tiny instruments and a small camera while they are inserted into the patient’s chest through small incisions, and a visualization and guidance station where the surgeon can manipulate the robot arms using three-dimensional images from the camera inside the patient.

The Congenital Heart Center surgeons share the robot with numerous other adult and pediatric surgeons at UMHS, from urologists who use it to remove prostate glands without damaging nearby nerves, to gynecologists who extract fibroids while sparing a woman’s uterus.

At the STS meeting, Ohye will show video footage of operations to divide a vascular ring -- a rare birth defect in which blood vessels surround the esophagus and trachea, reducing a child’s ability to breathe.

He will also present data on five vascular ring division patients who had a robot-assisted minimally invasive operation, and ten who had conventional open-chest surgery for the same problem. The data also include two other children who had robot-assisted surgery for other congenital heart defects -- a persistent left superior vena cava, and the placement of electrical leads for an implanted pacemaker to correct a heart rhythm irregularity.

The robot-assisted children ranged in age from 1 to 10 years, and the smallest weighed 10 kilograms, since the camera is too large to fit between the ribs of a smaller child.

The seven robot-assisted children had a median hospital stay of two days, compared with four days for children who had open-chest surgery. One patient in each group experienced a complication called a chylothorax, in which a lymphatic duct was punctured and leaked fluid into the chest cavity.

The children who had robot-assisted surgery were in the operating room for a median of 116 minutes, compared with a median of 83 minutes for the open-chest procedures. This difference was statistically significant. But Ohye feels it is not unreasonable, especially given the other positive effects of using the robot.

The U-M team is now offering robot-assisted surgery as an option to the parents of patients with vascular rings and certain other conditions, even as they plan to expand the range of procedures they perform with it.

Someday, they hope that real-time, three-dimensional images of the inside of the heart made by sound wave echos or electromagnetic devices rather than cameras will allow them to perform minimally invasive versions of procedures that involve entering the heart itself. Right now, the imaging techniques are used to aid open-chest procedures.

"In five or so years, perhaps we’ll perform most of the basic procedures with the robot’s help," Ohye predicts. "But for now, we’re starting with building the case for its safety and its cost-effectiveness, in certain types of cases. And we’re finding that parents of our patients are embracing it, and in some cases even asking for it."


The Michigan Congenital Heart Center is one of the world’s top centers for the diagnosis and treatment of heart and vascular disorders that arise during fetal development or childhood. Patients are often followed from before birth through adulthood. The MCHC takes a multidisciplinary team approach to patient care, and offers support services to help families cope. More than 900 surgical procedures, 600 heart catheterizations, and thousands of clinic visits take place at the MCHC each year. About half of the MCHC’s patients are from within Michigan, but families travel to Ann Arbor from around the country and throughout the world for treatment and surgery.

Kara Gavin | EurekAlert!
Further information:
http://www2.med.umich.edu/prmc/media/relarch.cfm

More articles from Health and Medicine:

nachricht Shipment tracking for "fat parcels" in the body
14.10.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Antibody-based eye drops show promise for treating dry eye disease
14.10.2019 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Shipment tracking for 'fat parcels' in the body

15.10.2019 | Life Sciences

An ultrafast glimpse of the photochemistry of the atmosphere

15.10.2019 | Physics and Astronomy

Unlocking the biochemical treasure chest within microbes

15.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>