Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic surgery for young heart patients shortens hospital stay and speeds recovery, study indicates

28.01.2004


Operation time somewhat longer, but benefits seen



In the first-ever direct comparison of robot-assisted and traditional surgery for children’s heart defects, University of Michigan surgeons report that the robot’s help reduces patients’ recuperation time and surgery-related trauma and scarring, while extending the length of the operation by just over half an hour.

Their finding suggests that the minimally invasive surgical techniques made possible by the surgeon-controlled, camera-guided robot system can give the same surgical result as open-chest techniques, with less impact on the young patient’s body.


And although the study group was small, the finding demonstrates that robot-assisted surgery may be a good option for certain defects.

U-M Congenital Heart Center pediatric heart surgeons will present their results here on Jan. 28 at the annual meeting of the Society of Thoracic Surgeons, as part of a workshop for other surgeons on robot-assisted options for young heart patients.

Says surgeon Richard Ohye, M.D., "Robot-assisted surgery has already shown quite a bit of promise in the adult population, including adults who have congenital heart anomalies. But we feel from our experience that it can be used on many pediatric patients weighing more than 10 kilograms, and can reduce hospital stays, operative trauma, cosmetic impact and overall recovery time. And we found it does so with an acceptable impact on a patient’s time in the OR."

Despite the added expense of operating room time and the robot itself, Ohye feels that the machine will more than offset its costs over time by reducing the time a child spends in the hospital after surgery, the complications he or she will face during recovery, and his or her parents’ time away from work.

Ohye and U-M pediatric cardiac surgery colleagues Edward Bove, M.D. and Eric Devaney, M.D. performed the robot-assisted and open surgeries compared in the report. Ohye and Devaney began using the robot at the U-M’s C.S. Mott Children’s Hospital in November 2002, one year after the U-M Health System acquired the $1 million da Vinci robot system.

The surgeons use the robot for a small minority of the more than 900 surgical procedures they perform each year on U-M Congenital Heart Center patients, but they expect the number will grow in the future.

The system has two main components: a seven-foot-high robot with three cable-driven that hold tiny instruments and a small camera while they are inserted into the patient’s chest through small incisions, and a visualization and guidance station where the surgeon can manipulate the robot arms using three-dimensional images from the camera inside the patient.

The Congenital Heart Center surgeons share the robot with numerous other adult and pediatric surgeons at UMHS, from urologists who use it to remove prostate glands without damaging nearby nerves, to gynecologists who extract fibroids while sparing a woman’s uterus.

At the STS meeting, Ohye will show video footage of operations to divide a vascular ring -- a rare birth defect in which blood vessels surround the esophagus and trachea, reducing a child’s ability to breathe.

He will also present data on five vascular ring division patients who had a robot-assisted minimally invasive operation, and ten who had conventional open-chest surgery for the same problem. The data also include two other children who had robot-assisted surgery for other congenital heart defects -- a persistent left superior vena cava, and the placement of electrical leads for an implanted pacemaker to correct a heart rhythm irregularity.

The robot-assisted children ranged in age from 1 to 10 years, and the smallest weighed 10 kilograms, since the camera is too large to fit between the ribs of a smaller child.

The seven robot-assisted children had a median hospital stay of two days, compared with four days for children who had open-chest surgery. One patient in each group experienced a complication called a chylothorax, in which a lymphatic duct was punctured and leaked fluid into the chest cavity.

The children who had robot-assisted surgery were in the operating room for a median of 116 minutes, compared with a median of 83 minutes for the open-chest procedures. This difference was statistically significant. But Ohye feels it is not unreasonable, especially given the other positive effects of using the robot.

The U-M team is now offering robot-assisted surgery as an option to the parents of patients with vascular rings and certain other conditions, even as they plan to expand the range of procedures they perform with it.

Someday, they hope that real-time, three-dimensional images of the inside of the heart made by sound wave echos or electromagnetic devices rather than cameras will allow them to perform minimally invasive versions of procedures that involve entering the heart itself. Right now, the imaging techniques are used to aid open-chest procedures.

"In five or so years, perhaps we’ll perform most of the basic procedures with the robot’s help," Ohye predicts. "But for now, we’re starting with building the case for its safety and its cost-effectiveness, in certain types of cases. And we’re finding that parents of our patients are embracing it, and in some cases even asking for it."


The Michigan Congenital Heart Center is one of the world’s top centers for the diagnosis and treatment of heart and vascular disorders that arise during fetal development or childhood. Patients are often followed from before birth through adulthood. The MCHC takes a multidisciplinary team approach to patient care, and offers support services to help families cope. More than 900 surgical procedures, 600 heart catheterizations, and thousands of clinic visits take place at the MCHC each year. About half of the MCHC’s patients are from within Michigan, but families travel to Ann Arbor from around the country and throughout the world for treatment and surgery.

Kara Gavin | EurekAlert!
Further information:
http://www2.med.umich.edu/prmc/media/relarch.cfm

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>