Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical engineering helps research into the liver

26.01.2004


Artificial glass livers being developed at the University of Leeds could help those suffering from liver failure, and improve understanding of how the organ works, researchers believe.



Dr Peter Walker of mechanical engineering is leading Leeds’ contribution to a three-year £320,000 project that aims to replicate the geometry of the liver, using glass and liver cells.

“The liver is a very complex organ, which we still don’t fully understand,” said Dr Walker. “If we can mimic closely how it’s constructed and how the cells function within it, we should ensure an effective ‘replacement’. It may also provide an alternative to animal testing for hepatic drugs and bring us one step closer to being able to engineer liver tissue.”


The artificial liver – to be used like a dialysis machine – will be constructed of tiny hexagonal glass plates with channels running from their edges to the centre.

Glass is the ideal substance for etching the channels – less than 1/200 of a millimetre wide – which are lined with liver cells which reproduce the cleaning work of the organ.

The blood flows to the edge of each hexagon and down the channels, cleaned by cells as it goes, before exiting through a central ‘vein’. The liver is the only organ in the body where blood from veins and arteries is mixed together.

The arterial blood, fresh from the lungs, provides the cells with the oxygen they need to function, while venal blood contains the impurities for the liver to clean out.

A major problem with artificial livers is that as the blood runs through, it loses too much oxygen, so cells at the end of the line are no longer effective. “Reproducing the exact layout of the liver should overcome this problem, as cells will behave as they do in the natural liver, performing different cleaning functions dependent on their position and the level of oxygen they receive,” said Dr Walker.

He is creating computer simulations to model the liver, so optimum channel size, flow rate and density of cells can be calculated as accurately as possible, before the artificial liver is constructed in the laboratory.

The project, funded for three years by the EPSRC, is in collaboration with the Rutherford Appleton Laboratory in Oxfordshire – which is etching the glass plates – and the University of Nottingham.

Vanessa Bridge | alfa
Further information:
http://reporter.leeds.ac.uk/495/s9.htm

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>