Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailored dosage of chemotherapy effective in treating breast cancer

16.12.2003


By tailoring the dosage of chemotherapy to each individual patient, the treatment of breast cancer could be improved considerably. This is shown in a dissertation by Uppsala researcher Henrik Lindman at Uppsala University in Sweden. The method has proven to yield excellent results in clinical tests.



The dissertation reports that an alternative way of tailoring the dosage of chemotherapy has been studied and found to work. If the advantages of this method compared to standard treatment can be verified in the follow-up study that has just been completed on more than 1,500 patients in Sweden and Denmark, we may be facing a more extensive change in the treatment of cancer, one that reaches far beyond the sphere of breast cancer. One clear advantage of the method, apart from fewer side-effects and less risk of under-dosage, is that it should provide a way of determining the value of new chemotherapies, since it is probable that tailored dosages will prevent improper dosage regimens to a greater extent than previously.

In treating cancer, the dosage of chemotherapy is normally determined on the basis of the body surface area of the patient, which factors in height and weight. This method has proven to be insufficient when it comes to differences among patients in the amount of chemotherapy in the blood. Some patients receive overdoses with severe side-effects as a result, while others receive under-dosed regimens that risk leaving the tumor insufficiently treated.


Henrik Lindman has studied a method of tailoring just the right dosage for each patient. This is done by measuring the decline in, above all, white corpuscles after each treatment and thereafter adjusting the following treatment. The method proved successful in the three different pioneering trials on women with breast cancer. The differences in tolerated chemotherapy were up to a factor of three across different patients, which, among other things, may be dependent on genetic differences in sensitivity. In a Nordic collaborative project, 525 women with breast cancer at high risk of recurrence were selected for treatment. Half of the patients received 9 doses of tailored treatment while the other half received high-dosage regimens with bone-marrow transplants after three standard dosages of chemotherapy. Patients receiving tailored treatment experienced a lower rate of recurrence of breast cancer (28% compared with 37% after 3 years).

The other two studies involved, respectively, 26 and 44 patients with metastasized breast cancer. Here, too, the effect of treatment was good in comparison with previous experience (81% and 63%, respectively, saw a dramatic reduction in their tumors). Women who could withstand the highest dosages did not experience more general side-effects than those who were given lower dosages.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>