Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PTEN and prostate cancer--the devil is in the doses

27.10.2003


Cancer is a complex disease where multiple genetic and environmental factors contribute to risk. Its onset and progression depends on the combination of a series of genetic disruptions rather than on a single event. At a genetic level, it is not just presence or absence of a gene (or a mutated version of the gene) that causes disease, but as Pier Paolo Pandolfi and colleagues report, protein "dose"--that is, the level of remaining activity--also influences cancer progression.



Focusing on the tumor suppressor gene PTEN, the researchers created a mouse model system to study tumor progression in prostate cancer. PTEN is among the most commonly mutated tumor suppressor genes in human cancer. And like many other tumor suppressors, PTEN targets proteins in signaling pathways that regulate cell growth and apoptosis in healthy tissue and contributes to cancer when dysfunctional. Humans, as diploid organisms, generally have two versions of most genes, including PTEN. In the event that one copy is damaged or lost, gene function is usually maintained by the other copy. In the classic definition of a tumor suppressor, both copies must be lost for a tumor to occur. Yet in many cases of advanced cancer, including prostate cancer, only one copy is lost at the time a patient shows symptoms. It is then not unreasonable to hypothesize that the degree of remaining PTEN activity controls the course of the disease: loss of one copy could influence tumor initiation, while further slight reductions might be sufficient to facilitate the invasion and metastatic behavior of late-stage cancers.

Pandolfi and colleagues chose two strategies to investigate this hypothesis. In the first approach, they genetically engineered one series of mice with minimal levels of murine PTEN protein (complete loss results in embryo death). This novel 25%–35% active PTEN "hypomorphic" strain of mice, which appears to retain the minimum level of PTEN needed to survive embryonic development, adds to existing strains of fully normal and 50% active PTEN mice. In order to model the full loss of PTEN protein, the researchers generated another series of mice in which PTEN genes were selectively disabled in the prostate only. The researchers found that subtle reductions in PTEN dose did indeed produce progressive changes in the biology of the tumor, while mice having no functional PTEN genes showed the most invasive and aggressive cancers. These results, the researchers say, show that PTEN plays a "crucial dose-dependent role in prostate cancer tumor suppression" and that progressive reduction of gene function induces progressive changes in the quantity and quality of molecular and pathological effects on the pathway to full-blown cancer.


By coupling the molecular genetics and dose of PTEN protein with the physiological progression of cancer in the prostate, these new mouse models may not only shed light on cancer progression in humans, but also help bolster diagnostic, prognostic, and therapeutic techniques. While evaluation of tumor status has traditionally been determined by pathological analysis of tissue samples, these new models allow scientists to pair anatomical stages with underlying molecular events--such as the expression level of a single gene or protein--to allow more accurate assessments. These molecular profiles can also help researchers design targeted, more efficient prostate cancer treatments. For example, if prostate tissue is hypersensitive to PTEN in humans--which the results suggest may be the case, since male mice with only 30% of normal PTEN levels show massive and selective enlargement of the prostate, and even invasive tumors--then ongoing monitoring of PTEN levels could help tailor therapies based on promoting PTEN expression. For patients with complete loss of PTEN function, where this would not be an option, inhibiting the proteins made overactive through PTEN loss could prove effective. And these approaches could well hold true for other cancers involving PTEN, including endometrial, brain, and breast cancer.


###
Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, et al. (2003) PTEN dose dictates cancer progression in the prostate. DOI: 10.1371/journal.pbio.0000059

All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere -- to read, download, redistribute, include in databases, and otherwise use -- subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

This article, which appears in PDF form online on October 27, 2003, is presented as a pre-issue publication. The article will appear both as HTML (along with the PDF) and in print in our December 22, 2003 issue.

CONTACT:
Dr. Pier Paolo Pandolfi
Molecular Biology Program and Department of Pathology
Memorial Sloan-Kettering Cancer Center
1275 York Avenue, Box 110
New York, NY 10021
United States of America
212-639-6168
212-717-3102 (fax)
p-pandolfi@ski.mskcc.org

Barbara Cohen | PLoS
Further information:
http://www.plos.org/downloads/plbi-01-03-pandolfi.pdf

More articles from Health and Medicine:

nachricht Study shows novel protein plays role in bacterial vaginosis
13.12.2019 | University of Arizona Health Sciences

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
12.12.2019 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>