Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When heme attacks: After trauma, the molecule that makes life possible rampages

02.10.2003


PENN researchers find how heme harms – And how to prevent the damage



Heme, the iron-bearing, oxygen-carrying core of hemoglobin, makes it possible for blood to carry oxygen, but researchers from the University of Pennsylvania School of Medicine have determined how free-floating heme can also make traumatic events worse by damaging tissue. The Penn researchers present their findings in the October 2nd issue of the journal Nature. Fortunately, the researchers also identified a chemical that can be targeted by drug developers to impede the deleterious effects of free-floating heme.

Following a traumatic event – such as an accident, a stroke, a heart attack or even surgery – heme floods the spaces between and inside cells and exacerbates the damage. It does so by shutting down an important cell membrane channel, an action that kills neurons and constricts blood vessels. While investigating this process, the researchers also determined that a chemical called NS1619 restores the function of the cell membrane channel. NS1619 and its derivatives could be the source for a new drug – one that prevents the secondary events that worsen trauma damage.


"Following a heart attack, a stroke, or any really severe physical injury, heme is literally shaken loose from hemoglobin," said Xiang Dong Tang, MD, PhD, Staff Scientist in Penn’s Department of Physiology. "Normally, cells can compensate and recycle loose heme. But when larger concentrations are released, heme can gum up the works, specifically the Maxi-K ion channel, a cell membrane protein important for blood vessel relaxation and neuron excitability."

Maxi-K is a channel that moves potassium ions out of cells. In the Nature paper, Tang and his colleagues prove that the Maxi-K protein possesses sites that bind heme. If these sites were removed or altered, heme could not effect Maxi-K proteins.

"Maxi-K is found in the lining of blood vessels. When it is turned off, the vessel constricts, increasing blood pressure, which is decidedly not beneficial following a heart attack, " said Toshinori Hoshi, PhD, Associate Professor in Penn’s Department of Physiology and co-author of the Nature article. "In neurons, disrupting Maxi-K leads to excessive calcium accumulation. Eventually, this ionic buildup triggers cell suicide and, therefore, the loss of the neuron."

The chemical heme is essential for most forms of life. It exists in hemoglobin for oxygen transport, in cytochromes for cellular energy production, and in guanylate cyclase for blood pressure regulation. The molecule itself is tiny, a flat snowflake of a carbon framework surrounding a single atom of iron, but it is crucial for the cellular process of respiration and the action of nirtroglycerine.

"Generally, the heme molecule is attached to larger molecules, such as hemoglobin, but it is easily set loose. Indeed, there is an entire cellular industry behind recycling and reusing ’lost’ heme," said Tang. "But that system can get overwhelmed in times of serious trauma and bleeding."

Studying the heme recycling system might prove useful in developing treatments for preventing the secondary damage set off by heme. Certain cells, such as neurons, do have ways of transporting heme. If the ’heme transport’ is identified and the specific blocker is found, it could help prevent symptoms resulting from trauma and bleeding.

Meanwhile, according to Tang and his colleagues, there is already a known agent that can relieve Maxi-K from heme inhibition. NS1619 is known as the "Maxi-K opener," and, as the researchers have shown, readily reverses the heme-mediated inhibition.

"I can envision the use of a drug similar to NS1619 as an emergency treatment," said Tang. "In the emergency room, after an accident or heart attack, it could be used to keep the damage from continuing on a cellular level – before it could result in bad effects for the entire body."

Scientists also contributing to this research include Rong Xu from Penn, Mark F. Reynolds, from St. Joseph’s University, Marcia L. Garcia, from Merck Research Laboratories, and Stefan H. Heinemann, from Friedrich Schiller University. Funding for this research came from the National Institutes of Health.

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Health and Medicine:

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>