Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When heme attacks: After trauma, the molecule that makes life possible rampages

02.10.2003


PENN researchers find how heme harms – And how to prevent the damage



Heme, the iron-bearing, oxygen-carrying core of hemoglobin, makes it possible for blood to carry oxygen, but researchers from the University of Pennsylvania School of Medicine have determined how free-floating heme can also make traumatic events worse by damaging tissue. The Penn researchers present their findings in the October 2nd issue of the journal Nature. Fortunately, the researchers also identified a chemical that can be targeted by drug developers to impede the deleterious effects of free-floating heme.

Following a traumatic event – such as an accident, a stroke, a heart attack or even surgery – heme floods the spaces between and inside cells and exacerbates the damage. It does so by shutting down an important cell membrane channel, an action that kills neurons and constricts blood vessels. While investigating this process, the researchers also determined that a chemical called NS1619 restores the function of the cell membrane channel. NS1619 and its derivatives could be the source for a new drug – one that prevents the secondary events that worsen trauma damage.


"Following a heart attack, a stroke, or any really severe physical injury, heme is literally shaken loose from hemoglobin," said Xiang Dong Tang, MD, PhD, Staff Scientist in Penn’s Department of Physiology. "Normally, cells can compensate and recycle loose heme. But when larger concentrations are released, heme can gum up the works, specifically the Maxi-K ion channel, a cell membrane protein important for blood vessel relaxation and neuron excitability."

Maxi-K is a channel that moves potassium ions out of cells. In the Nature paper, Tang and his colleagues prove that the Maxi-K protein possesses sites that bind heme. If these sites were removed or altered, heme could not effect Maxi-K proteins.

"Maxi-K is found in the lining of blood vessels. When it is turned off, the vessel constricts, increasing blood pressure, which is decidedly not beneficial following a heart attack, " said Toshinori Hoshi, PhD, Associate Professor in Penn’s Department of Physiology and co-author of the Nature article. "In neurons, disrupting Maxi-K leads to excessive calcium accumulation. Eventually, this ionic buildup triggers cell suicide and, therefore, the loss of the neuron."

The chemical heme is essential for most forms of life. It exists in hemoglobin for oxygen transport, in cytochromes for cellular energy production, and in guanylate cyclase for blood pressure regulation. The molecule itself is tiny, a flat snowflake of a carbon framework surrounding a single atom of iron, but it is crucial for the cellular process of respiration and the action of nirtroglycerine.

"Generally, the heme molecule is attached to larger molecules, such as hemoglobin, but it is easily set loose. Indeed, there is an entire cellular industry behind recycling and reusing ’lost’ heme," said Tang. "But that system can get overwhelmed in times of serious trauma and bleeding."

Studying the heme recycling system might prove useful in developing treatments for preventing the secondary damage set off by heme. Certain cells, such as neurons, do have ways of transporting heme. If the ’heme transport’ is identified and the specific blocker is found, it could help prevent symptoms resulting from trauma and bleeding.

Meanwhile, according to Tang and his colleagues, there is already a known agent that can relieve Maxi-K from heme inhibition. NS1619 is known as the "Maxi-K opener," and, as the researchers have shown, readily reverses the heme-mediated inhibition.

"I can envision the use of a drug similar to NS1619 as an emergency treatment," said Tang. "In the emergency room, after an accident or heart attack, it could be used to keep the damage from continuing on a cellular level – before it could result in bad effects for the entire body."

Scientists also contributing to this research include Rong Xu from Penn, Mark F. Reynolds, from St. Joseph’s University, Marcia L. Garcia, from Merck Research Laboratories, and Stefan H. Heinemann, from Friedrich Schiller University. Funding for this research came from the National Institutes of Health.

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>