Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists: Cloak of human proteins gets HIV into cells

27.08.2003


Three Johns Hopkins researchers propose, for the first time, that HIV and other retroviruses can use a Trojan horse style of infection, taking advantage of a cloak of human proteins to sneak into cells.



The hypothesis explains 20 years of perplexing observations and suggests new ways to reduce HIV transmission and treat HIV infection, but it also implies that existing approaches to developing vaccines against HIV won’t work. A description of the hypothesis and its supporting evidence appear in the Proceedings of the National Academy of Sciences, scheduled for publication online this week.

"Most researchers have focused on viral proteins when trying to understand HIV’s mechanisms or develop vaccines," says James Hildreth, M.D., Ph.D., professor of pharmacology and molecular sciences in Hopkins’ Institute for Basic Biomedical Sciences. "But so many aspects of retroviral biology have not been reconciled, including HIV, that we have to take a broader view. If our hypothesis is true and retroviruses can rely on human proteins, vaccines based solely on a few key viral proteins will never be able to completely prevent infection. There needs to be serious attention to this hypothesis."


Even if a vaccine against the viral proteins physically blocks a retrovirus’s primary way of infecting cells, the retrovirus’s ability to enter new cells by way of its cover of human proteins -- the Trojan horse -- provides previously unrecognized ways to escape the vaccine’s effects, says Stephen Gould, Ph.D., professor of biological chemistry in the Institute for Basic Biomedical Sciences.

To go from cell to cell, all retroviruses are packaged in "envelopes" made from viral proteins and proteins from human cell membranes. The prevailing view is that the viral proteins do all the work to enter new cells, and the human proteins are just along for the ride. But the Hopkins team suggests that sometimes the viral proteins take the back seat, and the retrovirus relies instead on the cells’ own mechanism for shuttling molecules from one cell to another.

"New hypotheses are frequently huge jumps from current thinking, that then occasionally turn out to be true. This is not one of those times," says Gould. "This hypothesis links what is known about how molecules are transported within and between cells and a great deal of what is known about HIV and other retroviruses. When the pieces are put together, it’s such an obvious connection. The biggest surprise is that the idea hasn’t been widely discussed before."

Researchers elsewhere, for example, have shown that a version of HIV completely missing its key envelope protein can still infect cells in the laboratory, strong support for the Trojan horse effect.

"Despite that observation being ’impossible’ under the prevailing view of how HIV gets into cells, people have said that this little bit of infection can’t be important," says Gould, an expert on cellular transport vehicles. "But just because something isn’t big, doesn’t mean it’s not important -- this little bit of infection offers the retrovirus a chance to survive, mutate and thrive in infected people. In general, our hypothesis makes HIV appear nastier than we think it is, and we already think it’s a pretty nasty virus."

But all is not lost, the Hopkins team says. The new hypothesis, and some quirky observations from the past, highlight the potential of targeting immune responses against the human proteins in the virus’s envelope, instead of the viral proteins, as a way to prevent infection.

Each person’s immune system innately "knows" to attack and destroy tissue from other people, a characteristic reflected in the need to have appropriate blood and organ "matches" in transfusions and transplants. The human proteins that elicit these immune responses are among those found in the viral envelope.

The researchers suggest that heightening this immune response by vaccinating people with small amounts of these human proteins (called "alloimmunization") could be a very cost-effective way to reduce the rate of new HIV infections, especially in developing countries. The immune system would immediately attack the viral envelope, and the virus would be degraded before the person’s own cell’s could become infected.

"Unlike current vaccine approaches, which target particular viral proteins, this new vaccination strategy has the decided advantage of working against all strains of HIV as well as against other retroviruses," says Gould.

"Harnessing this immune response may be the only near-term prospect we have to reduce the rate of new HIV infections," says Hildreth. "There’s lots of evidence supporting the idea of alloimmunization to fight HIV transmission. We need to push for it and push hard, especially since this could be done in developing countries today."

Already, some clinical reports indicate that people whose tissue and blood types don’t match are less likely to infect one another with HIV or other retroviruses. However, a person who is a "good" tissue match for his or her infected partner is more likely to become infected. Unfortunately, the proposed vaccine strategy might not help protect people from their rare "good" matches.

The proposed Trojan horse mode of infection stemmed from trying to explain a number of observations in their respective labs that couldn’t be explained by existing models of HIV biology. However, these as-yet unpublished findings can easily be explained if HIV can act like an exosome, tiny pockets made from cell membranes that are used to send molecules between cells.

Gould, an expert in the basic biology of the cell, Hildreth, an expert on HIV’s biology, and graduate student Amy Booth also reviewed decades of scientific reports about the viral envelope or "particle" -- the way retroviruses package themselves -- and more recent discoveries about exosomes.

The retroviral particles and exosomes contain the same human proteins, are built by the same machinery and have the same job -- transferring payloads from one cell to another. With these and other striking similarities, the researchers suggest retroviral particles are treated like regular exosomes. In this way, the retroviral particle is protected from immune attack and able to enter cells throughout the body.

"This ’Trojan exosome hypothesis’ explains why retroviruses carry the human proteins they do, why they are able to survive even in people with healthy immune systems, and why traditional approaches have failed to generate an effective HIV vaccine," says Gould. "The evolutionary implications are similarly revealing, both for how retroviruses evolved and why animals possess intense tissue rejection responses."

Adds Hildreth: "Reexamining previous experiments and analyzing new results in the context of this hypothesis have the potential to revolutionize what we know about retroviruses and what we can do to fight the spread of HIV and other retroviruses."

The researchers note that the immunization method suggested by their hypothesis and others’ observations is already performed safely to alleviate some instances of infertility, reducing the hurdles to testing its applicability in HIV prevention.


The work was supported by the National Institutes of Health and the Johns Hopkins Fund for Medical Discovery.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org
http://www.pnas.org

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>