Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists: Cloak of human proteins gets HIV into cells

27.08.2003


Three Johns Hopkins researchers propose, for the first time, that HIV and other retroviruses can use a Trojan horse style of infection, taking advantage of a cloak of human proteins to sneak into cells.



The hypothesis explains 20 years of perplexing observations and suggests new ways to reduce HIV transmission and treat HIV infection, but it also implies that existing approaches to developing vaccines against HIV won’t work. A description of the hypothesis and its supporting evidence appear in the Proceedings of the National Academy of Sciences, scheduled for publication online this week.

"Most researchers have focused on viral proteins when trying to understand HIV’s mechanisms or develop vaccines," says James Hildreth, M.D., Ph.D., professor of pharmacology and molecular sciences in Hopkins’ Institute for Basic Biomedical Sciences. "But so many aspects of retroviral biology have not been reconciled, including HIV, that we have to take a broader view. If our hypothesis is true and retroviruses can rely on human proteins, vaccines based solely on a few key viral proteins will never be able to completely prevent infection. There needs to be serious attention to this hypothesis."


Even if a vaccine against the viral proteins physically blocks a retrovirus’s primary way of infecting cells, the retrovirus’s ability to enter new cells by way of its cover of human proteins -- the Trojan horse -- provides previously unrecognized ways to escape the vaccine’s effects, says Stephen Gould, Ph.D., professor of biological chemistry in the Institute for Basic Biomedical Sciences.

To go from cell to cell, all retroviruses are packaged in "envelopes" made from viral proteins and proteins from human cell membranes. The prevailing view is that the viral proteins do all the work to enter new cells, and the human proteins are just along for the ride. But the Hopkins team suggests that sometimes the viral proteins take the back seat, and the retrovirus relies instead on the cells’ own mechanism for shuttling molecules from one cell to another.

"New hypotheses are frequently huge jumps from current thinking, that then occasionally turn out to be true. This is not one of those times," says Gould. "This hypothesis links what is known about how molecules are transported within and between cells and a great deal of what is known about HIV and other retroviruses. When the pieces are put together, it’s such an obvious connection. The biggest surprise is that the idea hasn’t been widely discussed before."

Researchers elsewhere, for example, have shown that a version of HIV completely missing its key envelope protein can still infect cells in the laboratory, strong support for the Trojan horse effect.

"Despite that observation being ’impossible’ under the prevailing view of how HIV gets into cells, people have said that this little bit of infection can’t be important," says Gould, an expert on cellular transport vehicles. "But just because something isn’t big, doesn’t mean it’s not important -- this little bit of infection offers the retrovirus a chance to survive, mutate and thrive in infected people. In general, our hypothesis makes HIV appear nastier than we think it is, and we already think it’s a pretty nasty virus."

But all is not lost, the Hopkins team says. The new hypothesis, and some quirky observations from the past, highlight the potential of targeting immune responses against the human proteins in the virus’s envelope, instead of the viral proteins, as a way to prevent infection.

Each person’s immune system innately "knows" to attack and destroy tissue from other people, a characteristic reflected in the need to have appropriate blood and organ "matches" in transfusions and transplants. The human proteins that elicit these immune responses are among those found in the viral envelope.

The researchers suggest that heightening this immune response by vaccinating people with small amounts of these human proteins (called "alloimmunization") could be a very cost-effective way to reduce the rate of new HIV infections, especially in developing countries. The immune system would immediately attack the viral envelope, and the virus would be degraded before the person’s own cell’s could become infected.

"Unlike current vaccine approaches, which target particular viral proteins, this new vaccination strategy has the decided advantage of working against all strains of HIV as well as against other retroviruses," says Gould.

"Harnessing this immune response may be the only near-term prospect we have to reduce the rate of new HIV infections," says Hildreth. "There’s lots of evidence supporting the idea of alloimmunization to fight HIV transmission. We need to push for it and push hard, especially since this could be done in developing countries today."

Already, some clinical reports indicate that people whose tissue and blood types don’t match are less likely to infect one another with HIV or other retroviruses. However, a person who is a "good" tissue match for his or her infected partner is more likely to become infected. Unfortunately, the proposed vaccine strategy might not help protect people from their rare "good" matches.

The proposed Trojan horse mode of infection stemmed from trying to explain a number of observations in their respective labs that couldn’t be explained by existing models of HIV biology. However, these as-yet unpublished findings can easily be explained if HIV can act like an exosome, tiny pockets made from cell membranes that are used to send molecules between cells.

Gould, an expert in the basic biology of the cell, Hildreth, an expert on HIV’s biology, and graduate student Amy Booth also reviewed decades of scientific reports about the viral envelope or "particle" -- the way retroviruses package themselves -- and more recent discoveries about exosomes.

The retroviral particles and exosomes contain the same human proteins, are built by the same machinery and have the same job -- transferring payloads from one cell to another. With these and other striking similarities, the researchers suggest retroviral particles are treated like regular exosomes. In this way, the retroviral particle is protected from immune attack and able to enter cells throughout the body.

"This ’Trojan exosome hypothesis’ explains why retroviruses carry the human proteins they do, why they are able to survive even in people with healthy immune systems, and why traditional approaches have failed to generate an effective HIV vaccine," says Gould. "The evolutionary implications are similarly revealing, both for how retroviruses evolved and why animals possess intense tissue rejection responses."

Adds Hildreth: "Reexamining previous experiments and analyzing new results in the context of this hypothesis have the potential to revolutionize what we know about retroviruses and what we can do to fight the spread of HIV and other retroviruses."

The researchers note that the immunization method suggested by their hypothesis and others’ observations is already performed safely to alleviate some instances of infertility, reducing the hurdles to testing its applicability in HIV prevention.


The work was supported by the National Institutes of Health and the Johns Hopkins Fund for Medical Discovery.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org
http://www.pnas.org

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>