Carnegie Mellon researchers developing new ways to store tissue, organs

Developing more efficient ways of storing tissues and organs

Carnegie Mellon University’s Yoed Rabin and Paul Steif have received $1.3 million over the next four years from the National Institutes of Health to develop more efficient ways of storing transplant tissue and organs in cryogenic temperatures. Mechanical Engineering professors Rabin and Steif are working to improve techniques of cryopreservation, the process of storing biological materials in extremely low temperatures.

“Our long-term goal is to reduce the destructive mechanical stresses induced during the cryopreservation of organs and tissues of a significant size,” said Rabin, who specializes in heat transfer in biological systems.

“It is a little bit like watching an ice cube break up in a glass of water and trying to figure out what made the ice fracture and devise ways to prevent it from cracking,” Rabin said.

Both Rabin and Steif are charged with developing engineering tools to monitor when these breakups are likely to occur and develop improved methods for storing transplant tissues such as blood vessels and heart valves, and ultimately for life-saving organs like kidneys, lungs or the heart.

The Carnegie Mellon researchers will work with Chicago-based Organ Recovery System, a company specializing in the clinical preservation and storage of tissues.

“We are extremely pleased to be working with Carnegie Mellon and its expert research team,” said Mike Taylor, vice president of research and development for Organ Recovery System. Taylor said his company will provide Carnegie Mellon researchers with their proprietary preservation technologies for blood vessel systems to test and study the thermal stresses during cryopreservation.

At present, clinicians are able to store embryos, sperm and stem cells in freezers, but Carnegie Mellon researchers want to develop systems for the safe storage of more complex tissues and organs, which could offer a significant breakthrough in the treatment of diseases and perhaps broaden the cache of transplant organs available to an increasing number of patients. As of August 1, 2003, 82,129 people nationwide were waiting for an organ transplant compared with 53,167 in 1997, according to the Richmond, Va.-based United Network for Organ Sharing. In addition, new preservation technology emerging from this basic research will be important as an enabling technology for the emerging disciplines of tissue engineering and regenerative medicine that seek to replace damaged or diseased tissues with new living material

Media Contact

Chriss Swaney EurekAlert!

More Information:

http://www.cmu.edu/

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors