Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slide Projector Kills Herpes Simplex Virus

04.07.2003


A lot of people suffer from herpes for all their lives. The herpes simplex virus (Type 1) constantly inhabits the organism revealing its presence from time to time. Once highly active anti- herpes drugs were developed (acyclovir and phosofonoacetic acids), the virus responded with new forms resistant to theses drugs. The Belorus researchers from the State Scientific Research Institute of Epidemiology and Microbiology, Ministry of Health, Republic of Belorus, and the Institute of Photobiology, National Academy of Sciences of Belorus, have suggested to fight these mutant viruses by the photodynamic inhibition method.



The method is based on the photosensitive reactions, which take place in biological systems. Researchers all over the world are actively developing new methods based on these reactions to cure various diseases. The essence of the method is that photosensitizer substances interact with the sick cells or infection pathogene. The above substances get destroyed under the influence of the visible light and form free radicals, including active forms of oxygen, which easily oxidize proteins, lipids and other biologically important molecules. Photosensitizers are of different types, but the Minsk researchers have chosen merocyanins, which bundle with diverse viral shells including the herpes simplex virus (Type 1).

The experiments were carried out with the cell culture of the kidney of the African green talapoin (Cercopithecus aethiops), infected by the herpes simplex virus (Type 1). Consequences of infection can be noticed already in 4-5 hours: the cells start to divide intensely, they merge with each other, foreign impurities appear in them, besides there are other typical indications perfectly visible through a microscope. Within 48-56 hours, the cells take the shape of a ball, flake away from the walls of a flask where they were grown up and all of them get killed. It was decided to annihilate the infected cells.


The cells of the green talapoin interact well with ? merocyanin MC 540 (about a billion molecules of photosensitizer bundle with each cell). Bundling of merocyanin MC 540 with infected cells depends on the stage of infection: it increases by approximately 22%, when the virus sticks round the cell, at the early stages of virus reproduction bundling remains on the same level and it decreases when virus particles get mature. Viruses synthesize their proteins with the help of the cell captured by them, due to that the cellular membrane structure slightly changes and acquires increased affinity with merocyanin. Thanks to that, infected cells actively interact with merocyanin MC 540, that is why they can be annihilated more or less selectively. The researchers have selected such a sensitizing agent doze and lighting conditions which annihilate mainly infected cells. For lighting, the researchers used a common slide-projector “Peleng 500 ?” (KGM lamp, 150 Wt).

The cells infected by the herpes virus culture mutants insensitive to traditional drugs die. The virus is incapable of propagating itself in the dying cells, and this the way the researchers plan to stop the infection development. The scientists assume that thephotosensitizer damages not only infected cells, but the viruses as well. According to the researchers, the photodynamic therapy may become an efficient remedy capable to stop herpes virus infections. It is most important to utilize this therapy in clinical practice, if the patients are infected with a virus resistant to the drugs. However, it is still a long way to go from the dish with the green talapoin’s cells culture through to clinical trials and particularly practice.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Ayahuasca compound changes brainwaves to vivid 'waking-dream' state
19.11.2019 | Imperial College London

nachricht A step closer to cancer precision medicine
15.11.2019 | University of Helsinki

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>