Research by Johns Hopkins Kimmel Cancer Center specialists has uncovered a novel pathway in the origin of pancreatic cancers, one of the deadliest of malignancies. Their findings are reported in the June 23, 2003, issue of Cancer Cell.
Working with cancer cells from 55 patients, the Hopkins team found that a growth signal normally turned off in adult tissues is mistakenly turned back on after injury or inflammation of the pancreas. "We think reactivation may be a first step in initiating pancreatic cancer, well before the onset of any alterations to the pancreatic cells genetic material," says Steven D. Leach, M.D., Paul K. Neumann Professor in Pancreatic Cancer at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and director of the study.
The Notch pathway, when functioning normally, regulates embryonic development in a wide variety of organisms, ranging from fruit flies to humans. In adult tissues, the pathway becomes dormant as cells become differentiated to perform specialized functions. But, when the pancreas is injured or diseased, Notch signaling may be reactivated in the adult pancreas, resulting in conversion of adult pancreas cells to cells similar to those seen in embryonic pancreas. These primitive cells accumulate in the epithelium, or lining, of the pancreas, setting the stage for the additional genetic changes that lead to cancer. "Using drugs to deactivate the Notch pathway could prevent these cancer-causing events from occurring," says Leach.
Valerie Mehl | EurekAlert!
Further information:
http://www.hopkinsmedicine.org
http://www.quad-net.com
Illinois team develops first of a kind in-vitro 3D neural tissue model
12.12.2019 | University of Illinois College of Engineering
Safer viruses for vaccine research and diagnosis
12.12.2019 | University of Queensland
More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?
It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...
In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.
Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...
The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.
Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.
Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...
Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...
Anzeige
Anzeige
03.12.2019 | Event News
First International Conference on Agrophotovoltaics in August 2020
15.11.2019 | Event News
Laser Symposium on Electromobility in Aachen: trends for the mobility revolution
15.11.2019 | Event News
Weizmann physicists image electrons flowing like water
12.12.2019 | Physics and Astronomy
Revealing the physics of the Sun with Parker Solar Probe
12.12.2019 | Physics and Astronomy
New technique to determine protein structures may solve biomedical puzzles
12.12.2019 | Life Sciences