Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel flu vaccine shows promise in mice

27.05.2003


If successful in humans, vaccine could eliminate annual flu shot



Globally, the influenza virus, or flu, is thought to cause between three and five million cases of severe illness and between 250,000 and 500,000 deaths annually, according to the World Health Organization. New strains of the virus emerge each year, so that the U.S. Centers for Disease Control and other public health services must produce and distribute a new vaccine against the new flu strains each year. And each year, people seeking to avoid a flu infection must arrange to receive a flu shot - rarely a pleasant experience - from their doctor or other health-care provider. Also, the effectiveness of the vaccine is known to decline in the elderly, a population for whom flu infections can be particularly dangerous.

A new prototype vaccine developed by researchers at The Wistar Institute, however, might be able to protect recipients not only against this year’s strains of the virus, but also against those yet to come, possibly eliminating the need for an annual shot. In fact, because the vaccine would be administered as a nasal spray, it could eliminate the need for a shot of any kind. A report on the new findings appears in the June 2 issue of the journal Vaccine.


"Current vaccines are quite effective, but they are based on regions of the virus that mutate rapidly, so health officials are constantly faced with the problem of updating the vaccines," says Walter Gerhard, M.D., senior author on the Vaccine report and a professor in the immunology program at The Wistar Institute. "A vaccine directed against a more stable region of the virus would offer important public-health advantages, and this is what we are hoping to be able to develop."

Current flu vaccines trigger an immune response to a pair of prominent viral-coat proteins that mutate constantly, which is the reason last year’s flu vaccine is ineffective against this year’s flu strains. The experimental vaccine contains an engineered peptide that mimics a third, smaller viral-coat protein called M2 that remains largely constant from year to year.

Mice vaccinated with the vaccine generated a strong antibody response against M2. In fact, the mice generated a more powerful antibody response to the vaccine than to infections by the flu virus itself, according to Gerhard.

"We saw a significant antibody response to our peptide vaccine," he says. "Actually, the response was much stronger than what we saw in mice recovering from infections, which was surprising. This may be meaningful in terms of the potential effectiveness of the vaccine as we go forward."

The experimental vaccine was administered twice intranasally to mice. After vaccination, a steep rise in M2-specific antibodies was seen in blood samples from the mice, and the mice exhibited significant resistance to viral replication in the respiratory tract.

Ongoing experiments in the Gerhard laboratory are exploring the questions of how and why the new flu vaccine is able to produce a stronger antibody response than infections, which are generally considered the best way to generate resistance to any pathogen.

Also, Gerhard is looking into whether the M2 element of the virus might begin to mutate in the presence of the anti-M2 antibodies generated by the new vaccine. His concern is that the observed viral stability in the M2 region of the flu virus may simply be a reflection of the fact that the immune system does not mount a vigorous response to it, so that evolutionary pressure on that region of the virus is not great.

"Among human influenza virus strains, there is little variation in the M2 region," Gerhard says. "That could be due to the fact that humans do not generate a significant antibody response to it, so that the virus does not need to change to escape those antibodies."

Wistar associate professor Laszlo Otvos, Jr., Ph.D., collaborated on the study. Krystyna Mozdzanowska was the lead author. The remaining coauthors, all Wistar-based, are JingQi Feng, Mark Eid, Goran Kragol, and Mare Cudic.

Support for the research was provided by the National Institutes of Health.


The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center - one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu/

More articles from Health and Medicine:

nachricht Researchers develop high-performance cancer vaccine using novel microcapsules
25.05.2020 | Chinese Academy of Sciences Headquarters

nachricht Blood flow recovers faster than brain in micro strokes
25.05.2020 | Rice University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>