Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude researchers use DNA chips to determine how leukemia cells respond to different drugs

22.04.2003


Finding is a significant step toward new insights for designing combination chemotherapy



Investigators at St. Jude Children’s Research Hospital have discovered numerous genes that alter their level of activity in characteristic patterns in response to specific chemotherapy treatments. The genes were identified in the leukemia cells of children undergoing chemotherapy for acute lymphoblastic leukemia (ALL).

The researchers say this finding is a significant step in the emerging field of pharmacogenomics—the study of a person’s entire set of genes in order to determine which ones control that individual’s response to drug therapy.


The goal of the St. Jude researchers is to understand how cancer cells respond or become resistant to specific treatments and use these new clues to take the guesswork out of designing combination drug treatments for deadly childhood leukemia, according to William E. Evans, Pharm.D., St. Jude scientific director.

“While this study’s findings occurred in children being treated specifically for ALL, these findings serve as a paradigm for a wide variety of cancers in children and adults,” Evans said.

Evans is senior author of a report on this study appearing in the April 21 online issue of Nature Genetics. ALL is a cancer of the white blood cells in which an excess number of immature and non-functional white blood cells overwhelm the body’s ability to make normal blood cells in the bone marrow. It is the most common type of cancer in children, with about 3,000 new cases each year.

“Custom designing therapy, based on patient’s leukemic-cell and normal-cell genetics, as well as the genetic changes with chemotherapy, will maximize the treatment effects while minimizing the risk of severe side effects,” said Ching-Hon Pui M.D., member of St. Jude Hematology Oncology Department and a collaborator on the research.

Evans and his colleagues used a technique called gene expression analysis to study the response to treatment of leukemia cells taken from children before and after their initial drug treatment for ALL. Specifically, the St. Jude researchers analyzed the levels of activity of more than 9,600 genes in the cancerous white blood cells of these children before and after treatment with methotrexate (MTX) and/or mercaptopurine (MP), two drugs commonly used to treat this cancer. The children received one of four treatment regimens: high-dose MTX; high-dose MTX plus MP; low-dose MTX plus MP; and MP alone.

Based on their observations of the activity of the 9,600 genes in response to treatment, the investigators identified 124 genes whose changes in expression differed depending on which treatment the child received.

Researchers observed marked differences depending on whether the drugs were given alone or in combination. The genes that altered their activity in response to chemotherapy included those involved in apoptosis (programmed cell death, or cell suicide), mismatch repair (repairing a form of DNA mutation caused by the insertion of the wrong building block into a new copy of a gene), the control of the cell cycle (growth, DNA duplication and division), and the response of cells to the stress of chemotherapy.

The response of these particular genes suggests that leukemia cells react to drug treatment in very specific ways, depending on the treatment, according to Dr. Evans. “This kind of information will give us important new clues to how these medications work, and what cancer cells do to try to protect themselves from these drugs,” he said.

Another important finding was the way that leukemia cells responded when these two drugs were given together, versus alone.

“We’ve long assumed that the effects of combination chemotherapy can’t be predicted just by trying to add up the effects of the different drugs used in the therapy,” Evans said. “But now we have real, detailed proof that combination therapy isn’t just the sum of its parts. And we can use these new insights to design more rational and effective ways to use these drugs.”

ALL occurs after pieces of DNA break off different chromosomes and switch locations, each piece of DNA moving to the other chromosome. This movement causes abnormal gene activity, including the activation of oncogenes (genes known to cause cancer). Previous studies at St. Jude showed that the prognosis for cure differs significantly among the various genetic subtypes of ALL. These differences make it possible to differentiate among the major subtypes of leukemic cells. The differentiation also helps researcher to identify some patients at high risk of failing treatment.

“Our previous studies of ALL focused on differences in gene expression in cancer cells before the patients were treated with chemotherapy,” Evans said. “In this latest study we identified for the first time the changes in gene expression caused by chemotherapy itself.”

The different patterns of gene responses evoked by MTX and MP were consistent with the fact that these two drugs kill cancer cells by different mechanisms. In addition, there are distinct differences between the way high-dose and low-dose MTX exert their effects.

“Based on these differences, it’s likely that other anti-cancer agents that kill cancer cells by significantly different mechanisms compared to MTX and MP, will also cause changes that are even more distinct than the ones we observed in this study,” Evans said. “This suggests that pharmacogenomics will continue to expand our understanding of genetic responses to therapy.”


Other authors of this paper include Meyling H. Cheok, (a student from the University of Bonn, Germany, working at St. Jude) and Wenjian Yang, Ching-Hon Pui, James R. Downing, Cheng Cheng, Clayton W. Naeve and Mary V. Relling, all of St. Jude.

The work was supported by the National Institutes of Health, a Cancer Center Support Grant from the US National Cancer Institute, the American Cancer Society, Dr. Hilmer Foundation, German Science Foundation and ALSAC.

St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital, in Memphis, Tennessee, was founded by the late entertainer Danny Thomas. The hospital is an internationally recognized biomedical research center dedicated to finding cures for catastrophic diseases of childhood. The hospital’s work is supported through funds raised by ALSAC. ALSAC covers all costs not covered by insurance for medical treatment rendered at St. Jude Children’s Research Hospital. Families without insurance are never asked to pay. For more information, please visit www.stjude.org.


Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org/
http://www.stjude.org

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>