Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain gliomas progress as function of crucial gene is lost

07.04.2003


For the first time, researchers are characterizing the molecular processes that turn brain cancer deadly, and their work may result in a diagnostic test that can predict patient survival.



The research, by scientists at The University of Texas M. D. Anderson Cancer Center demonstrates that degree of loss of a crucial tumor suppressor gene, the AP-2( transcription factor, correlates with progression of different human gliomas.

For example, researchers found that normal brain tissue, as well as grade II gliomas, maintained expression of AP-2(, whereas 96 percent of grade III glioma, and almost 99 percent of grade IV glioma had lost AP-2(.


"Although previous molecular markers have been identified in malignant gliomas, none have exhibited such a strong correlation with progression, indicating the pivotal role of this gene," says Amy Heimberger, M.D., assistant professor in the Department of Neurosurgery.

The findings one day may be clinically important, says Eric McGary, M.D., Ph.D., a clinical fellow.

If validated through further study, the results can help scientists devise a diagnostic test to check for loss of function of the AP-2( gene, which can help doctors and patients know about treatment options. "No such test exists like that now," he says. Dr. Heimberger is following the long-term survival of patients within the various grades of gliomas to determine if loss of the AP-2( confers a more serious prognosis.

McGary led the effort to characterize how cancer develops when the AP-2( gene, which normally protects against cancer development, is lost. They have found that other tumors such as melanoma become increasingly deadly when the gene is no longer active, and have described its role in breast and prostate cancer as well.

The AP-2( transcription factor controls the expression of many genes, including c-Kit, which regulates cellular proliferation and differentiation, MUC18, an adhesion molecule involved in angiogenesis, and MMP2, which is involved in invasion. When AP-2( is lost, less c-Kit, but more MUC18 and MMP2 are produced, resulting in an increased potential of the cell to grow and divide uncontrollably.

"As such, AP-2( acts as a tumor suppressor gene," says Menashe Bar-Eli, PhD, professor in the Division of Cancer Medicine and a senior member of the research team.

Looking at tumor samples taken from 279 patients with different kinds of brain cancer, the research team used a tissue array constructed by Dr. Gregory Fuller, associate professor in the Department of Pathology, to look for AP-2( gene expression.

In addition to their findings of different stages of gliomas, they found that 21.5 percent of oligodendrogliomas did not express AP-2(, but this increased to 66 percent in cases of anaplastic oligodendrogliomas.

The team also looked at glioblastomas, which are the most common malignant brain tumors in adults and are the most resistant and deadly of all brain cancers to treat. They found that none of the four different glioblastoma cell lines they tested expressed any detectable levels of AP-2(.

"The discovery of the ubiquitous loss of AP-2( in high-grade malignant gliomas provides a unique target for new therapies aimed at restoring the function of that gene," says Heimberger. "We are already looking at trying to replace AP-2( function in animal models with gene therapy in order to slow down growth of the tumor," McGary added.

Laura Sussman | EurekAlert!

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An MRI technique has been developed to improve the detection of tumors

03.06.2020 | Medical Engineering

K-State study reveals asymmetry in spin directions of galaxies

03.06.2020 | Physics and Astronomy

The cascade to criticality

03.06.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>