Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Say Deadly Twist Key To Sickle Cell Disease

31.03.2003


Patients with sickle cell disease have mutant haemoglobin proteins that form deadly long, stiff fibres inside red blood cells. A research team led by University of Warwick researcher Dr Matthew Turner, propose a mathematical model in the 28 March online issue of PRL to explain the persistent stability of these deadly fibres. The theory suggests that an inherent "twistiness" in the strands that make up the fibres could be the key to their durability and possibly to new treatments.



Red blood cells supply oxygen to the body using their cargo of haemoglobin, a protein that can capture and release oxygen. Haemoglobin molecules normally float freely in the cell, but sickle cell patients have a mutated, "sticky," form of haemoglobin that tends to clump together into long fibres. The stiff fibres form a scaffolding that distorts the cells into their namesake "sickle" shape, so they jam up trying to pass through small blood vessels. The traffic jams deprive vital organs of oxygen, so patients end up with anaemia, jaundice, major organ damage, and many other maladies.

A sickle haemoglobin fibre can be made up of anywhere from 14 to more than 400 individual strands of haemoglobin molecules linked into long chains. Matthew Turner, of the University of Warwick in the UK, wondered why these strands tend to clump together into long, stiff, fibres rather than compact crystals, which would be less harmful. "A scaffolding made of the rigid fibres is much worse than a couple little sugar-cube-like crystals floating around," Turner says. So he and his colleagues constructed a mathematical model.


The team’s equations start with the trade-offs that exist in any material as it tries to find the shape with the least overall stress. The forces at work include bending and stretching, and for haemoglobin strands, there is also a propensity to stick together. This stickiness would normally make a thick, compact crystal more stable than a thin fibre, Turner explains, because a crystal maximizes the contact area of the protein with itself. But for sickle haemoglobin, fibres are more stable. To favour fibres, the equations needed to include the fact that the individual strands of molecules are inherently "twisty." They behave like the coiled wire that attaches a telephone to its handset, apparently because the molecules link up in a way that favours twisting. The strands wrap around one another like threads of rope to form the fibres. In their paper, the team shows that their model’s predictions for two of the mechanical properties of fibres agree with experiments.

Turner says that the model suggests a possible treatment for sickle cell disease. Gene therapy could introduce a haemoglobin mutant that formed less-twisty individual strands, and this "good mutant" might turn fibres into less harmful crystals. Simply introducing normal haemoglobin has been shown not to work, perhaps because the few normal haemoglobin molecules cannot eliminate the fibres.

Peter Dunn | alfa
Further information:
http://www.communicate.warwick.ac.uk/index.cfm?page=pressrelease&id=973

More articles from Health and Medicine:

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

nachricht Breakthrough in understanding how deadly pneumococcus avoids immune defenses
13.11.2018 | University of Liverpool

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>