Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher explores tumors’ survival strategy

21.02.2003


Dr. Kouros Motamed is studying endothelial cells where they live, in the complex environment that provides, not only support and structure, but regulation and direction.


Dr. Kouros Motamed, vascular biologist at the Medical College of Georgia, is studying angiogenesis, the formation of new blood vessels, and how some tumors pirate this mechanism in order to survive.



As he studies these cells that line blood vessels, this vascular biologist at the Medical College of Georgia focuses on the proteins and growth factors that regulate their normal processes, including proliferation, differentiation, migration and death.

He wants to better understand how these cells interact with their environment because there are still many unanswered questions.


But he also wants to know because tumors sometimes commandeer these cells’ ability to grow new blood vessels that bring life-sustaining nutrients and oxygen. "For most tumors to become any larger than 2 to 3 millimeters (a small fraction of an inch) in diameter, they have to recruit blood vessels," said Dr. Motamed.

This new vessel growth, called angiogenesis, can be beneficial. An injury can throw an angiogenic switch, activating a previously quiet endothelial cell. "As a result of activation, the endothelial cell loses its contact with the matrix (the milieu cells live in), elongates and invades the surrounding, stromal tissue," Dr. Motamed said. The cell then begins to proliferate, forming the lumen through which blood will eventually flow, and recruits supporting cell types and matrix components to form a new, functional vascular bed that is believed to accelerate wound healing.

The fact that many tumors also activate angiogenesis to survive has helped make it a hot topic in science. Dr. Motamed, who came to MCG in September from The Hope Heart Institute in Seattle, has his eye on the role of basic fibroblast growth factor in promoting angiogenesis and a protein called SPARC, which seems to have multiple roles in cancer and new blood vessel formation.

"SPARC is a protein most abundant during tissue remodeling and repair," said Dr. Motamed. The protein has many functions including regulating the activity of growth factors. His studies are helping delineate the exact molecular mechanism through which SPARC inhibits basic fibroblast growth factor and vascular endothelial growth factor, both important to angiogenesis. Most tumor cells also express high levels of these growth factors. "In addition to making a host of factors themselves, cancer cells can also manipulate the cells of the host to facilitate their own proliferation and migration," Dr. Motamed said.

SPARC - secreted protein acidic and rich in cysteine - is commonly expressed in the healthy remodeling of tissue, such as during embryonic development and wound- healing. It also is expressed in varying degrees by different cancers; expression is increased in breast cancer, prostate cancer and melanoma and decreased in ovarian cancer. "The bottom line is that the environment that supports the growth of cancer cells and their development into tumors is regulated by a multitude of factors. One of these factors is SPARC or a class of proteins like it," Dr. Motamed said. Although the exact role(s) of SPARC in this complex process remains unclear - and may vary depending on the tissue in which it’s expressed - Dr. Motamed believes it’s an important role that takes him back to the cell matrix.

He’s looking at the SPARC expressed by prostate, breast and ovarian cancers to distinguish the role of SPARC expressed by these cancers and their supporting cells. Dr. Motamed, in collaboration with investigators at The Hope Heart Institute and the University of Texas Southwestern, will use the SPARC-less mouse model and a normal, control counterpart for these studies at MCG. He’ll also be looking at how the different tumors fare in the varying SPARC environments.

One of his many goals is to find the contribution of SPARC endogenous to the mouse, including exploring its potential for inhibiting and promoting tumors. It could be that SPARC’s more common role in inhibiting blood vessel formation is changed when tumors express yet another protein that cuts or cleaves SPARC, turning it into a promoter. It also could be that still other proteins cleave the cell matrix, releasing its previously dormant store of growth factors and, consequently, a huge burst of factors that can induce new blood vessel formation, he said.

"The school of thought is that there is a constant dialogue between the cancer cells and their so-called stromal cells, which are the supporting, non-cancerous cells within a tumor environment," Dr. Motamed said. "It’s very obvious that you have to find out the players that regulate tumor cells or, the opposite, inhibit the growth of tumor cells, in this milieu that contains the cancer cells and supporting cells. The more you find out about all of these regulatory elements, the better off you are in battling tumors and cancer."


###
Support for Dr. Motamed’s research includes a four-year Howard Temin Award from the National Cancer Institute.

The Medical College of Georgia is the state’s health sciences university and includes the Schools of Allied Health Sciences, Dentistry, Graduate Studies, Medicine and Nursing, MCG Hospital and Clinics and the Children’s Medical Center.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu/

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>