Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suppressing immune system reverses otherwise untreatable case of blood disease

21.01.2003


Treatment with two medications that suppress the immune system, rituximab and cyclophosphamide, appears to have cured one woman of an otherwise untreatable case of the blood disease known as thrombotic thrombocytopenic purpura (TTP). The findings support the theory that TTP is an autoimmune disease, and not only provide insight into diagnosis and treatment, but also reveal clues about blood clotting and autoimmune diseases in general.



"In this particular patient who did not respond to standard therapy, immunosuppression seems to have been successful," says Morey A. Blinder, M.D., associate professor of medicine and of pathology and immunology at Washington University School of Medicine in St. Louis. "These results are promising for others suffering from similarly resistant cases of TTP."

Blinder led the study, in conjunction with J. Evan Sadler, M.D, Ph.D., professor of medicine and of biochemistry and molecular biophysics. Their findings appear in the Jan. 21 issue of the journal Annals of Internal Medicine.


TTP is a blood disorder that affects an estimated 3,000 Americans each year, most of whom are women of childbearing age. Prior to the early 1980s, the prognosis was grim: The risk of dying from complications of the disease such as heart attack or stroke was as high as 90 percent. And because the disease is so rare, it continues to be misdiagnosed and untreated.

Today, most patients who are diagnosed accurately with TTP are successfully treated with plasmapheresis, in which an individual’s blood is swapped for healthy blood in a daily process similar to dialysis for kidney failure. But plasmapheresis does not target the underlying problem, which is believed to be similar to autoimmune diseases such as lupus, in which the immune system attacks a person’s own tissues. Therefore, even with daily plasmapheresis, the disease returns in about 25 percent of patients.

In 2000, Sadler’s team, in collaboration with investigators at the University of Washington in Seattle, identified a protein in the bloodstream called von Willebrand factor-cleaving protease and found that it either is missing or abnormal in people with TTP, presumably as a result of disruption by the immune system. Without it, the protein called von Willebrand factor is not regulated and therefore sticks to itself, forming large clumps, or blood clots, that often lead to stroke or heart attack.

"The discovery of this protein really helps us understand the mechanism of blood clotting in general and how important von Willebrand factor is," says Blinder. "Also, we hope to use this knowledge to develop a definitive test for TTP so that it can be more easily diagnosed and more effectively treated. It also may be possible to genetically engineer the protein for infusion, similar to the use of insulin for diabetes."

To prevent the immune system from destroying or disrupting this essential cleaving protease, the Washington University team tested two drugs already shown to suppress the immune system. In October 2001, after 19 months of relapsing disease despite extensive plasmapheresis, the team gave one 42-year-old woman with severe TTP two drugs – rituximab and cyclophosphamide, both known anti-cancer drugs. Her symptoms and blood levels improved and continue to be stable to date.

"This may not be a public health issue like AIDS or breast cancer, but the fact that first this disease was almost always life-threatening and now may be curable is really important," says Blinder. "And now that we’re really beginning to understand the disease itself, it will help us diagnose and treat TTP and will provide insight into blood clotting and how immune diseases work in general."


###
Zheng X, Pallera AM, Goodnough LT, Sadler JE, Blinder MA. Remission of chronic thrombotic thrombocytopenic purpura after treatment with cyclophosphamide and rituximab. Annals of Internal Medicine, vol. 138, Jan. 21, 2003.

Funding from the National Institutes of Health and the Howard Hughes Medical Institute supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>