Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental enrichment reverses learning impairments caused by lead poisoning

27.11.2002


Environmental enrichment that stimulates brain activity can reverse the long-term learning deficits caused by lead poisoning, according to a study conducted by researchers at the Johns Hopkins Bloomberg School of Public Health. It has long been known that lead poisoning in children affects their cognitive and behavioral development. Despite significant efforts to reduce lead contamination in homes, childhood lead poisoning remains a major public health problem with an estimated 34 million housing units in the United States containing lead paint. The Hopkins study is the first to demonstrate that the long-term deficits in cognitive function caused by lead can be reversed and offers a basis for the treatment of childhood lead intoxication. The findings appear in the online edition of the Annals of Neurology.



“Lead exposure during development causes long-lasting deficits in learning in experimental animals, but our study shows for the first time that these cognitive deficits are reversible,” said lead author Tomás R. Guilarte, PhD, professor of environmental health sciences at the Johns Hopkins Bloomberg School of Public Health. “This study is particularly important for two reasons. First, it was not known until now whether the effects of lead on cognitive function were reversible. Secondly, the environmental enrichment that reversed the learning deficits was administered after the animals were exposed to lead. Environmental enrichment could be a promising therapy for treating millions of children suffering from the effects of lead poisoning,” added Dr. Guilarte.

For their study, Dr. Guilarte, graduate student Christopher Toscano, research technologist Jennifer McGlothan, and research associate Shelley Weaver observed groups of lead–treated or non-treated (control) rats that were raised in an enriched environment. Enrichment cages were multi-level, containing toys, a running wheel, a hammock, platforms, tunnels, and housed multiple animals. Littermates to these rats were raised in standard-sized laboratory cages that the researchers designated as “isolated environment.” To measure the learning ability of rats in the various treatment groups, the researchers trained each rat to find a submerged, invisible platform in a pool of water, called the water maze. Each day of training, they timed how long each rat took to find the platform. They observed that both the lead-exposed and control rats living in the enriched environment learned to find the platform in 20 seconds or less within the four-day training period. The isolated control rats took longer to find the platform, while lead-exposed isolated rats took the longest and nearly 50 percent of them failed to learn the test by the last day of training.
Along with the enhanced learning performance of lead-exposed rats reared in an enriched environment, the researchers found a recovery in the levels of the NR1 subunit of the N-methyl-D-aspartate receptor (NMDAR) in the hippocampus. The NR1 subunit is obligatory for functional NMDAR and these researchers have previously shown that lead targets the NMDAR. The hippocampus is a brain region important for learning and memory and previous research has determined that the NR1 subunit is essential for learning performance in the water maze.



“We all recognize that children that are intellectually stimulated have a greater capacity to learn. Unfortunately, often times the same children that are exposed to lead, also live in impoverished and neglected homes. It seems that based on our study, many lead-exposed children would benefit from this type of therapeutic approach,” said Dr. Guilarte.

“Environmental Enrichment Reverses Cognitive and Molecular Deficits Induced by Developmental Lead Exposure” was written by Tomás R. Guilarte, PhD, Christopher D. Toscano, MS, Jennifer L. McGlotham, MS, and Shelly A. Weaver, PhD. It is published in the December 2002 edition of the Annals of Neurology.

The research was supported by the National Institute of Environmental Health Sciences.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health:Tim Parsons or Kenna Brigham @ 410-955-6878 or paffairs@jhsph.edu.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu/Press_Room/Press_Releases/environmental_enrichment.html
http://www.niehs.nih.gov/

More articles from Health and Medicine:

nachricht New nanomedicine slips through the cracks
24.04.2019 | University of Tokyo

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>