Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pituitary tumor cells in Cushing’s syndrome found to express large amounts of protein receptor

29.10.2002


Treatment with a common diabetes drug effectively shrank these tumors in mice



While most cases of a hormonal disorder called Cushing’s Syndrome are caused by non-cancerous pituitary tumors that secrete too much of a particular hormone resulting in high cortisol levels, the disorder can ultimately lead to an early death for many patients whose tumors cannot be removed surgically.

Now, researchers at Cedars-Sinai Medical Center have found that pituitary tumors express an abundance of a specific protein receptor and report that treatment with a common diabetes drug was effective in shrinking tumor size and reducing hormone production in Cushing’s pituitary tumors in mice. The findings, reported in the November issue of the journal, Nature Medicine, may lead to a new way to treat patients who have Cushing’s Syndrome.


"Now that we know that this protein receptor plays a role in the pituitary tumors that cause Cushing’s syndrome, we may have found a drug that can effectively treat this disease," said Dr. Anthony Heaney, lead author of the study and Assistant Professor and Medical Director of the Neuroendocrine Tumor Center at Cedars-Sinai Medical Center. "We will soon begin a clinical trial to test the effectiveness of this antidiabetic drug in patients with Cushing’s syndrome who have pituitary tumors."

The most common type of Cushing’s syndrome is caused by prolonged high-level exposure of a hormone called ACTH (adrenocorticotropin), which is secreted in excess by tumors of the pituitary gland, situated at the base of the brain and, which controls growth, metabolism and reproduction. Although the disorder is rare, it affects more women than men by a ratio of 5:1. Symptoms include weight gain with rounding of the face; increased fat in the neck; thinning skin; excess hair growth on the face neck, chest abdomen and thighs; muscle weakness and bone loss (osteoporosis); high blood sugar; diabetes; and high blood pressure. These effects are caused by high levels of adrenal steroids, or cortisol. The disorder is commonly treated with surgery to remove the tumor, but tumors are not always completely removed, either because they are too small to detect or have spread to parts of the brain that cannot be accessed via surgical procedures. Further, even if the tumor is successfully removed initially, about 50 percent of patients’ experience a recurrence sometime after surgery.

The protein receptor, called PPAR-gamma (peroxisome proliferator activating receptor), is a member of the steroid family and functions to regulate other genes involved in growth and metabolism. For example, the protein plays a role in the body’s ability to respond to insulin, which lowers blood sugar. In fat cells, PPAR-gamma regulates sugar metabolism.

In view of the relationship between excess steroid hormones and obesity, the investigators first examined normal human pituitary tissue to determine which pituitary cells expressed PPAR-gamma. Their analysis revealed that PPAR-gamma was present selectively on normal ACTH-secreting pituitary cells, leading them to examine tumor specimens that secreted too much ACTH. In this analysis, they evaluated six ACTH-secreting pituitary tumors that had been surgically removed. They found that PPAR-gamma was abundantly expressed in all six tumors, as compared to modest expression in the normal pituitary tissue samples.

"The over-expression of this receptor on pituitary tumor cells indicates that PPAR-gamma may play a major role in the causation of Cushing’s syndrome," said Dr. Shlomo Melmed, senior author of the study and Sr. Vice President of Academic Affairs and Professor and Director of the Burns and Allen Research Institute at Cedars-Sinai Medical Center.

Based on these findings, the investigators tested whether pituitary tumor cells would respond to drugs called thiazolidinediones (TZDs), which are commonly used in the treatment of diabetes and work by activating gamma. To do this, they first treated pituitary tumor cells with two different types of TZD drugs called troglitazone or rosiglitazone. They found that both drugs caused pituitary tumor cells to die, and inhibited secretion of ACTH hormone from the tumor cells.

Given that the TZD’s were effective to induce tumor-cell death and slow the secretion of ACTH in cell cultures, the investigators subsequently tested the drugs in mice with ACTH-secreting pituitary tumor cells, which were then randomly selected to receive food containing rosiglitazone or normal food. After four weeks, the investigators found that four of the five untreated mice developed large, visible pituitary tumors, and the typical Cushing’s features of a "moon shaped" face and large neck. In comparison, only one of the five rosiglitazone treated mice developed a small pituitary tumor. The investigators also found that ACTH and other steroid hormones were considerably lower in the treated mice as compared to those not receiving treatment.

"These results indicate that TZDs may be effective in slowing tumor growth in humans," said Dr. Heaney.



Cedars-Sinai Medical Center is one of the largest non-profit academic medical centers in the Western United States. For the fifth straight two-year period, Cedars-Sinai has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthrough in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals in health care in 2001, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Kelli Stauning | Cedars-Sinai Medical Center
Further information:
http://www.csmc.edu/

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new paradigm of material identification based on graph theory

17.06.2019 | Materials Sciences

Electron beam strengthens recyclable nanocomposite

17.06.2019 | Materials Sciences

Tiny probe that senses deep in the lung set to shed light on disease

17.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>