Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on cells’ ’power centers’ sheds light on AIDS treatments

10.10.2002


Companies that create HIV-AIDS drugs now have key information that could assist in making new medications with fewer side effects.



Researchers Henry Weiner, a professor of biochemistry at Purdue University, Steven Zollo of the National Institute of Standards and Technology and Lauren Wood of the National Cancer Institute, noted the similarity between HIV-AIDS treatment side effects and naturally occurring diseases. Certain HIV-AIDS treatment side effects, such as fat loss and insulin resistance, clinically resemble diseases of the mitochondria, the "power centers" in cells, that affect the functioning of other parts of the cell.

The researchers hypothesized that the drugs to combat HIV infection also might inadvertently affect the functioning of the mitochondria.


"Finding that a drug affects a different target than the one it was designed for is not unusual," said Weiner, an expert on protein processing in the mitochondria. The team speculated that current AIDS treatments using drugs that inhibit HIV proteins also could inhibit a key mitochondrial protein.

This speculation fits the observation by doctors that side effects resembling mitochondrial dysfunction originated after new drugs became part of the standard drug "cocktail" used to treat AIDS patients. Highly Active Antiretroviral Therapy, or HAART, has prolonged the lives of many, but also has been associated with side effects such as diabetes, high cholesterol and the development of fatty deposits.

To test the theory that the drugs were inhibiting the mitochondria, the researchers flooded isolated mitochondria with large amounts of the drugs and then measured the levels of processed protein in the mitochondria.

They found that a number of HIV-AIDS drugs can inhibit mitochondrial processing.

Although these findings suggest a possible link between HIV-AIDS drugs and mitochondrial dysfunction, Weiner said he believes that investigating the mitochondria of patients in treatment, or using tissue culture grown in the lab, is the next step.

"That is the only way to determine whether actual patients taking the medication are more than just slightly compromised by the effects of the HIV-AIDS medication on their mitochondria."

In the interim, Weiner said drug companies may find this information useful in efforts to make medications with fewer side effects.

"Drug companies making new AIDS protease inhibitors can take the enzyme we used and screen new potential drugs and select ones that can fight the virus but not damage the mitochondria," he said.

Drug manufacturers may not have made the connection to the mitochondria because the drugs’ effects are minor, Weiner said.

"The protease inhibitors were weak inhibitors of the mitochondria’s enzymatic processing system," he said. "If they were better inhibitors, that would have likely led to more serious complications in patients."

Weiner also sees other possible impacts from the research, such as potential anticancer treatments. He said scientists might find a "good way to kill tumors," by inhibiting specific enzymes within the tumors’ own mitochondria.

The research was published in the September issue of the Journal Mitochondrion. Weiner’s portion of the research was funded in part by the National Institutes of Health.

Contact: Beth Forbes, (765) 494-2722; forbes@purdue.edu

Source: Henry Weiner, (765) 494-1650; hweiner@purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Beth Forbes | EurekAlert!
Further information:
http://www.purdue.edu/
http://www.agriculture.purdue.edu/AgComm/public/agnews/

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>