Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy reverses muscular dystrophy in animal model

17.09.2002


Researchers have proven that gene therapy can reverse the pathological features of muscular dystrophy in an animal model. Before, gene therapy had only been able to prevent further muscle-wasting in mice. "We expect to build on these results in the continuing search for a way to treat a horrible disease. Our results indicate that gene therapy could be used not only to halt or prevent this disease, but also to restore normal muscle function in older patients," says Dr. Jeffrey S. Chamberlain, professor of neurology at the University of Washington School of Medicine in Seattle.



Chamberlain is the senior author of the paper describing the results, which will be published in the Proceedings of the National Academy of Sciences online Early Edition the week of Sept. 16 to 20.

Duchenne muscular dystrophy is an X-linked genetic disorder that strikes one of every 3,500 newborn boys. The genetic disorder means the body does not produce the dystrophin protein, which is necessary for the structural support of muscle. Without this protein, muscles weaken to the point where the victim cannot survive. There is no specific treatment against any form of muscular dystrophy, except for supportive measures, such as physical therapy, assistive technology and corrective surgery. Boys and men with the disorder usually die from respiratory failure before they can turn 25.


Researchers have been looking for many years for ways to introduce the dystrophin gene into the body of patients to replace the missing gene. In doing so, researchers have developed a strain of mice who lack the dystrophin gene. In the past, researchers have been able to insert the gene into newborn mice via adenoviral vectors. But those vectors have many viral properties, and results have been limited because adult mice and mice that have begun to develop symptoms of the disease developed a sharp host immune response that eliminated the therapeutic gene.

The results have also been limited because the dystrophin gene is large, and until now, there has not been a good way to deliver the entire gene and have it remain in the muscles of the mice. Last spring, Chamberlain and colleagues reported they were able to deliver a "micro" version of the dystrophin gene. Even the micro version appeared able to reverse the muscle-wasting process, but it was not as effective as the full gene.

However, in the Sept. 16 paper, Chamberlain and colleagues describe how they developed A stripped-down vectors that did not raise a host immune response and which delivered the full-length, muscle-specific dystrophin gene. They showed that the full gene could be delivered to muscles of young and old mice, even well after severe muscle damage had developed. Also, they showed that normal muscle function was restored to a level that directly correlated with the amount of the gene that was delivered.

"These results are extremely encouraging. We have shown that replacing the dystrophin gene will correct this disease, even in older animals. In future research, we hope to develop better methods to deliver the gene to all the muscles of the body, as currently we are limited to treating relatively small muscles. We believe these results also support the need to move forward with human clinical trials to assess the safety of these methods in patients," Chamberlain said.

The research was funded by grants from the National Institutes of Health, the Muscular Dystrophy Association and the Apex Foundation, a family foundation established by Bruce and Jolene McCaw. Other authors of the paper include Christiana DelloRusso, the lead author, of the UW Departments of Physiology and Neurology; Jeannine M. Scott, Dennis Hartigan-O’Connor and Robert W. Crawford of the Department of Neurology; former UW researchers Giovanni Salvatori, Catherine Barjot and Ann S. Robinson, and Susan V. Brooks of the University of Michigan.

Walter Neary | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>