Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex physical learning may compensate for prenatal alcohol exposure, study shows

08.08.2002


Complex physical learning may help children overcome some mental disabilities that result from prenatal alcohol consumption by their mothers, say researchers whose experiments led to increased wiring in the brains of young rats.



In their study, infant rats were exposed to alcohol during a period of brain development (especially in the cerebellum) that is similar to that of the human third trimester of pregnancy. In adulthood, the rats improved their learning skills during a 20-day regimen of complex motor training, and generated new synapses in their cerebellum.

About 0.1 percent of U.S. births involve newborns with Fetal Alcohol Syndrome, characterized by a variety of physical, mental and neurological defects that often lead to behavioral, learning and mobility problems. Ten times that many children, also exposed to alcohol before birth, may not meet the diagnostic criteria for FAS but still have behavioral and brain defects that are now classified as alcohol-related developmental disorders.


Simply not drinking during pregnancy could prevent such damage, but a 1998 survey by the Centers for Disease Control and Prevention found both increasing rates of drinking by pregnant mothers and FAS in the last 15 years.

"The disorders associated with fetal exposure to alcohol are, by far, the leading known cause of mental retardation and developmental delay in this country and most others," said study co-author William T. Greenough, Swanlund Endowed Professor of Psychology at the University of Illinois at Urbana-Champaign. "In addition to the social cost, the economic cost is hundreds of billions of dollars each year. While it is, in principle, completely possible to prevent these disorders, this has not happened, even with increased public awareness. Hence it is critical to learn how to do as much as possible to improve the outcome for those affected by fetal alcohol exposure."

The study, published in the journal Brain Research, was led by Anna Y. Klintsova, a visiting professor of psychology and associate director of the fetal alcohol research laboratory at the Beckman Institute of Advanced Science and Technology at Illinois.

In the study, experimental groups of newborn rats that were suckling the normal diet of mother’s milk were given supplements with alcohol that achieved blood alcohol levels similar to binge drinking by pregnant women in the third trimester. Previous research has shown that many neurons (Purkinje cells) in the cerebellum are permanently destroyed by alcohol during this time.

After weaning, some of the alcohol-exposed rats and a control group of unexposed rats began the training, which involved learning to navigate increasingly difficult challenges involving motor skills. For 10 days, the alcohol-exposed rats made more errors than the control rats, but all of them improved and successfully completed the training exercise.

The researchers later examined the cerebellum of all the rats, finding the expected 30 percent loss of Purkinje cells in the alcohol-exposed rats. These neurons are the only ones that send signals to nerve cells outside of the cerebellar cortex. However, Klintsova said, the surviving neurons in the alcohol-exposed rats that went through the complex learning test had about 20 percent more synapses than all of the rats that did not train.

In a follow-up experiment, not reported in this study, the researchers tested the alcohol-exposed rats in a completely new motor-skills learning test. The rats that had undergone the previous training successfully learned the new skills at a level comparable to that done by control rats. More than half of the alcohol-exposed rats that did not receive the earlier training had to be removed from the experiment; none learned the new skills during the short period of testing.

"It may be that we did not challenge them enough to be able to detect significant differences still present from alcohol exposure," Klintsova said. "But we are very encouraged by what we saw, because we found, to our pleasure, that the alcohol-exposed animals that had undergone the complex motor learning behaved not significantly worse than the control animals."

Because the brain is more plastic, more changeable, early in life, Klintsova said, "the earlier you start intervention, the more benefits a child is likely to get."

"If a diagnosis is done early enough, and parents don’t hide the fact that the mother drank during the third trimester, then a physician can explain what may be happening," she said. "Then more effort could be put into the physical activity and complex learning environment for the children."

The researchers believe that an increase in the formation of synapses, the connections of communications, by neurons in the cerebellum led to the behavioral recovery of the alcohol-exposed rats. The cerebellum is responsible for coordinating very precise components involved in movement.

"A lot of damage can be done to the motor function, but it may be possible to rehabilitate these deficits if caught early enough," Klintsova said. "The children may not become champions, but they may be able to stand on the same playing field as their peers."

The National Institutes of Health funds the research. The NIH recently awarded a new five-year grant to continue the work. The funds will be divided among Klintsova, who has accepted a faculty appointment beginning in September at the State University of New York at Binghamton; Greenough at Illinois; and co-author Charles R. Goodlett at Indiana University-Purdue University in Indianapolis. The continuing research at Illinois will focus on the brain’s capacity to make new neurons during postnatal development and adulthood as a possible resource for therapeutic intervention, said Greenough, a professor of molecular and integrative physiology and of psychiatry in the College of Medicine.


Other researchers involved in the Brain Research study were former Illinois students Carly Scamra and Melissa Hoffman, and Ruth M.A. Napper of the University of Otago Medical School in Dunedin, New Zealand.


Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>