Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Normal-looking sperm may have serious damage; scientists urge more care in selection

09.07.2008
Intracytoplasmic sperm injection (ICSI), where a single sperm is injected into an egg to fertilise it, is increasingly used to help infertile men father children.

Although the sperm chosen for the procedure may appear quite normal, researchers in the US have found that many of them in fact have DNA damage, which can decrease the chances of pregnancy.

Mr. Conrado Avendaño, from the Jones Institute for Reproductive Medicine, Norfolk, Virginia, USA, and colleagues studied a group of infertile men with moderate and severe teratozoospermia, where most of the sperm looks abnormal. He told the 24th annual conference of the European Society of Human Reproduction and Embryology today (Tuesday 8 July) that, in this group of men, the embryologist would normally select the ‘best looking’ sperm for injection. “This would typically be done by analysing the sperm’s shape under a microscope,” he said. “A ‘good’ sperm by this criterion would have a regular oval head and a long straight tail. However, our research has shown that appearances can be deceptive.”

Mr. Avendaño and colleagues studied sperm from ten infertile men and found that, despite appearing to be completely normal, many of them had DNA damage (DNA fragmentation). “In routine ICSI procedure, the embryologist chooses the best-looking sperm under the microscope, but it could be damaged,” he said. “DNA-damaged sperm has a highly deleterious effect on the ability to achieve a pregnancy. Even if damaged sperm are used and the woman becomes pregnant, the chances of miscarrying are significantly higher.”

The researchers compared levels of DNA fragmentation in sperm from the infertile group with that from fertile men. The study was performed by a simultaneous examination of normal sperm morphology using face contrast and DNA fragmentation by fluorescence microscopy. The sperm morphology was evaluated in 400 randomly selected cells per sample. When a sperm with normal morphology was found, the light was switched to fluorescence to determine DNA integrity. Sperm with normal morphology from the fertile group showed no evidence of DNA fragmentation. But in the infertile men, between 20 and 66% of normal-looking sperm had DNA damage.

“The origin of DNA fragmentation can be multi factorial,” said Mr. Avendaño. “Oxidative stress (mainly due to reproductive tract infections) and apoptosis are the most studied, but other factors as age, smoking, exposure to air pollution and abnormal testicular warming are believed to increase the proportion of sperm DNA fragmentation.”

The researchers are now applying DNA fragmentation evaluation to couples with male factor infertility. “Our preliminary results using this new evaluation method show a clear negative correlation between the percentage of DNA fragmented sperm and the embryo quality and pregnancy outcome,” said Mr. Avendaño.

“Different research groups have shown that in addition to affecting normal embryonic development, fertilisation with damaged spermatozoa resulting in a live-born infant can be associated with increased chromosomal abnormalities, minor or major birth defects, and even childhood cancer,” said Mr. Avendaño. “Our work has shown that normal sperm morphology alone should not be used as the unique attribute for the selection of sperm for ICSI. New methods that allow an accurate separation of sperm with intact DNA should be sought.”

Sperm biology has received less attention since the introduction and success of the ICSI technique, say the researchers. “While the ICSI procedure bypasses the natural sperm selection, we believe that the deleterious effects of injecting a DNA-fragmented sperm should and can be avoided. Further research into sperm biology is essential if we are to avoid problems in the future,” said Mr. Avendaño.

Sarah De Potter | alfa
Further information:
http://www.eshre.com

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>