Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-powered implants for injured knees

30.06.2008
As news of Tiger Woods' knee injury hits the headlines, a researcher at the University of Southampton has developed a new self-powered sensor to monitor progress during knee operations.

As part of his final year project in his Masters degree in Electromechanical Engineering, which he studied at the University's School of Electronics and Computer Science (ECS), Fauzan Baharudin explored the potential for the use of thick film technology in the development of medical sensors which could be embedded in the knee during surgery.

This new sensor, called Serial In-vivo Transducer (SIT), which uses thick film technology, could measure tendon force during Anterior Cruciate Ligament (ACL) reconstruction.

The ACL is the most commonly injured ligament and is commonly damaged by athletes, in fact it is reported that this is the ligament associated with Tiger Woods’ injury.

Fauzan’s project was supervised by Professor Neil White at ECS, who, in 1991 developed thick film piezoelectric material which made it possible to produce a sensor which could power itself if it were installed in a device that vibrates and would be ideal for appliances where physical connections to the outside world were difficult.

Professor White said: ‘Although this work is still in its infancy, our earlier research in thick-film sensors has shown that it is feasible to apply the technology to medical applications such as prosthetic hands. We have also shown that it is possible to harvest energy from the human body using piezoelectric materials and the knee is subjected to very high levels of force during everyday activities. It therefore seems logical to combine the two approaches to deliver a new type of embedded, self-powered sensors

In Fauzan’s project entitled Assessing the use of thick-film technology in knee surgery: along with energy harvesting in-vivo, he has also incorporated some of this energy harvesting capability into SIT which means that it will be self-powered.

'I chose knee surgery because this has been very little research carried out in this field and I felt a self-powered device could work well in the knee,' he said.

Before developing SIT, Fauzan reviewed the existing devices in this field and concluded that due to its flexibility in fabrication, low capital cost, fast lead time and its suitability for use in the body, thick film technology is the best solution for ACL surgery. Assessment of the energy harvesting feature revealed that the device could produce more than enough energy to power itself.

'It remains a mystery to me, given how common knee injuries are among athletes, that devices like ours have not been developed before now,' said Fauzan. 'A sensible assumption for this is that thick film technology does not reach medical researchers as quickly as it does within the microelectronics community hence the delay in realising the huge potential in developing in vivo transducers.'

Helene Murphy | alfa
Further information:
http://www.soton.ac.uk

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>