Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-powered implants for injured knees

30.06.2008
As news of Tiger Woods' knee injury hits the headlines, a researcher at the University of Southampton has developed a new self-powered sensor to monitor progress during knee operations.

As part of his final year project in his Masters degree in Electromechanical Engineering, which he studied at the University's School of Electronics and Computer Science (ECS), Fauzan Baharudin explored the potential for the use of thick film technology in the development of medical sensors which could be embedded in the knee during surgery.

This new sensor, called Serial In-vivo Transducer (SIT), which uses thick film technology, could measure tendon force during Anterior Cruciate Ligament (ACL) reconstruction.

The ACL is the most commonly injured ligament and is commonly damaged by athletes, in fact it is reported that this is the ligament associated with Tiger Woods’ injury.

Fauzan’s project was supervised by Professor Neil White at ECS, who, in 1991 developed thick film piezoelectric material which made it possible to produce a sensor which could power itself if it were installed in a device that vibrates and would be ideal for appliances where physical connections to the outside world were difficult.

Professor White said: ‘Although this work is still in its infancy, our earlier research in thick-film sensors has shown that it is feasible to apply the technology to medical applications such as prosthetic hands. We have also shown that it is possible to harvest energy from the human body using piezoelectric materials and the knee is subjected to very high levels of force during everyday activities. It therefore seems logical to combine the two approaches to deliver a new type of embedded, self-powered sensors

In Fauzan’s project entitled Assessing the use of thick-film technology in knee surgery: along with energy harvesting in-vivo, he has also incorporated some of this energy harvesting capability into SIT which means that it will be self-powered.

'I chose knee surgery because this has been very little research carried out in this field and I felt a self-powered device could work well in the knee,' he said.

Before developing SIT, Fauzan reviewed the existing devices in this field and concluded that due to its flexibility in fabrication, low capital cost, fast lead time and its suitability for use in the body, thick film technology is the best solution for ACL surgery. Assessment of the energy harvesting feature revealed that the device could produce more than enough energy to power itself.

'It remains a mystery to me, given how common knee injuries are among athletes, that devices like ours have not been developed before now,' said Fauzan. 'A sensible assumption for this is that thick film technology does not reach medical researchers as quickly as it does within the microelectronics community hence the delay in realising the huge potential in developing in vivo transducers.'

Helene Murphy | alfa
Further information:
http://www.soton.ac.uk

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>