Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover paradox about general anesthesia: It can increase post-surgical pain

24.06.2008
The general anesthesia that puts patients into unconscious sleep so they do not feel surgical pain can increase the discomfort they feel once they wake up, say researchers from Georgetown University Medical Center.

They say their findings, the first to scientifically explain what has been anecdotally observed in the clinic, may lead to wider use of the few anesthetics that don't have this side effect, or to the development of new ones.

In the June 23rd issue of the Proceedings of the National Academy of Sciences (PNAS), the scientists report that "noxious" anesthesia drugs - which most of these general anesthetics are - activate and then sensitize specific receptors on neurons in the peripheral nervous system. These are the sensory nerves in the inflammation and pain pathway that are not affected by general anesthesia drugs that target the central nervous system – the brain and the spinal cord.

"The choice of anesthetic appears to be an important determinant of post-operative pain," says the study's lead investigator, Gerard Ahern, Ph.D., an assistant professor in the Department of Pharmacology at Georgetown University Medical Center. "We hope these findings are ultimately helpful in providing more comfort to patients."

It has long been known that general anesthetics cause irritation at the infusion site or in the airways when inhaled, Ahern says. And investigators have also known that while they suppress the central nervous system, they can activate so called "pain-sensing" or nociceptive nerve cells on the peripheral nervous system – in fact, anesthesiologists often first use a drug to suppress inflammation and pain before delivering the anesthesia to put the patient to sleep.

But what has not been understood is the specific mechanism by which anesthetics affect sensory neurons, or that they can continue to cause pain and inflammation even as they are being used during surgery, he says.

The researchers tested the hypothesis that two specific receptor on the nerves cells (TRPV1 and TRPA1) which are often expressed together and which also react to other irritants, such as garlic and wasabi, were the ones activated by the noxious drugs.

"Plants produce chemicals such as capsaicin, mustard and garlic that were meant to stop animals from eating them. When they are eaten, the two main receptors that react to them are TRPV1 and TRPA1," he says. In fact, TRPA1 is more commonly known as the mustard-oil receptor, and is a principal receptor in the pain pathway, Ahern says.

Experiments showed that general anesthetics appear to regulate TRPA1 in a direct fashion, and are thus responsible for the acute noxious effects of the drugs. Perhaps the strongest evidence is that mice bred without TRPA1 genes demonstrate no pain when the drugs are administered and used, Ahern says. "Most general anesthetics activate the mustard oil receptor, and animals that don't have the receptor don't have irritation," he says.

The research team also found that nerve-mediated inflammation was greater when pungent (chemical irritants) versus non-pungent inhaled general anesthetics were used.

What both findings suggest is that sensory nerve stimulation throughout the body just before and during surgery adds to the pain that is felt after the patient is awake, Ahern says. "This is a provocative finding in terms of the clinical setting, because it was not really recognized that use of these drugs results in release of lots of chemicals that recruit immune cells to the nerves, which causes more pain or inflammation."

Some general anesthetics do not activate the mustard-oil receptor, but they may not be as effective in other ways, Ahern says. "This tells us that there is room for improvement in these drugs."

The study was funded by National Institutes of Health and the National Multiple Sclerosis Society. Co-authors include José Matta Ph.D., Paul Cornett Ph.D., Rosa Miyares B.A., Ken Abe, Ph.D., and Niaz Sahibzada, Ph.D., from Georgetown University.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>