Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring Blood Flow Helps Improve Prostate Biopsies

27.05.2008
Using a special ultrasound technique to spot areas of blood flow in the prostate gland may substantially reduce the number of unnecessary biopsies, according to a new study by urologists and radiologists at the Jefferson Prostate Diagnostic Center and the Kimmel Cancer Center at Jefferson in Philadelphia.

The researchers found that biopsies targeted to areas of increased blood flow in the prostate were twice as likely to be positive for cancer compared with conventional prostate biopsy techniques. They reported their initial results from a clinical trial this week at the annual meeting of the American Urological Association in Orlando.

According to Prostate Diagnostic Center co-director Edouard Trabulsi, M.D., assistant professor of Urology at Jefferson Medical College of Thomas Jefferson University, finding the best areas to perform biopsies in the prostate has always been difficult. Standard methods entail simply dividing the prostate into a dozen regions within the gland, almost randomly. Center co-director Ethan Halpern, M.D., who is principal investigator on the four-year, National Cancer Institute-supported trial, has been developing and refining techniques to enhance targeted biopsy of the prostate for more than a decade.

Dr. Trabulsi, Ethan Halpern, M.D., professor of Radiology and Urology at Jefferson Medical College, and their co-workers randomly divided 63 prostate biopsy patients into two groups. One group was given the drug dutasteride, which can reduce the blood flow in benign prostate tissue, while the other half received a placebo. They then compared the results from biopsies targeted by blood flow changes using contrast-enhanced ultrasound to those that were done the standard way. The study involved 979 biopsies.

“We’ve previously shown that a two-week course of the drug Avodart (dutasteride) before biopsy reduces the benign blood flow, or background noise,” Dr. Trabulsi explains, “allowing us to see subtle flow changes to target for biopsy. When we did this, we found that targeted biopsies based on the contrast-enhanced ultrasound are much more likely to detect prostate cancer. That’s the exciting part about this.”

Dr. Halpern explains that standard procedures fail to diagnose prostate cancer in approximately 30 percent of men with the disease, even though the biopsy protocol may sample 12 to 18 tissue cores from the prostate. “In the future, our goal is to perform a limited number of targeted biopsies and leave the rest of the prostate alone,” he says. “This will provide a safer, more cost-effective approach to diagnosing prostate cancer.”

The doctors say that the current study involves a novel ultrasound algorithm called flash replenishment imaging to show fine vascular flow differences. “The novelty is using the dutasteride before biopsy, using contrast-enhanced ultrasound and using the latest ultrasound technology to look for blood flow changes associated with prostate cancer.”

“We are beginning to have patients who were operated on come back in,” Dr. Trabulsi notes. “If we can show that we reliably hit the areas of cancer based on the ultrasound results and didn’t miss any, it’s a home run.”

The trial is continuing and the team is hoping to enroll about 450 men in the trial. For more information, please see the Prostate Diagnostic Center site, www.prostate.tju.edu.

Steve Benowitz | EurekAlert!
Further information:
http://www.prostate.tju.edu
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>