Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calorie restricted diet prevents pancreatic inflammation and cancer

16.04.2008
M. D. Anderson, UT-Austin pre-clinical research points to preventive and therapeutic target

Prevention of weight gain with a restricted calorie diet sharply reduced the development of pancreatic lesions that lead to cancer in preclinical research reported today by researchers from The University of Texas at Austin and The University of Texas M. D. Anderson Cancer Center at the American Association for Cancer Research annual meeting.

The research sheds light on the connection between obesity, calorie intake and pancreatic cancer by comparing a calorie restricted diet, an overweight diet and an obesity-inducing diet in a strain of mice that spontaneously develops pancreatic lesions that lead to cancer.

"Obesity is a known risk factor for pancreatic cancer, but the mechanism underlying that relationship is unknown," said senior author Stephen D. Hursting, Ph.D., professor in M. D. Anderson's Department of Carcinogenesis and Chair of the Division of Nutritional Sciences at the University of Texas. "Our findings indicate that calorie restriction hinders development of pancreatic cancer, which could have implications for prevention and treatment of pancreatic tumors caused by chronic inflammation and obesity."

The group's analysis points to a connection between calorie intake and a protein called Insulin-like Growth Factor (IGF) -1, with obesity increasing and calorie restriction decreasing levels of IGF-1. IGF-1 is an important growth factor known to stimulate the growth of many types of cancer cells. Inflammatory signaling proteins also were found to be reduced in the blood of the calorie-restricted mice.

"Mice on the heavier diets had significantly more lesions and larger lesions than those on the restricted calorie diet," said first author Laura Lashinger, Ph.D., a post-doctoral fellow in Hursting's laboratory. The strain of mice, developed by Susan Fischer, professor in M. D. Anderson's Department of Carcinogenesis, spontaneously develops lesions associated with pancreatitis - inflammation of the pancreas. These lesions develop into pancreatic cancer and virtually all of these mice die within six to eight months.

The researchers fed the calorie restricted group a diet that was 30 percent lower in calories than that consumed by the overweight group and 50 percent lower than the obese group. Only 7.5 percent of mice on the calorie-restricted diet developed pancreatic lesions at the end of the experiment, and these lesions were so small that none exhibited symptoms of illness. For mice on the overweight diet, 45 percent developed lesions, as did 57.5 percent of those on the obesity-inducing diet. Lesions were also much larger in the overweight and obese mice than the calorie restricted mice.

While calorie restriction has been shown to have an anti-cancer effect in multiple species and for a variety of tumor types, its impact had not been well-studied in a model of pancreatic cancer. Pancreatic cancer is the fourth leading cause of cancer death and remains mostly intractable to existing treatments.

The decline in blood levels of inflammatory proteins in the calorie restricted mice makes sense, Lashinger notes, because fat tissue is a major source of inflammatory factors such as cytokines.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>