Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic engineering could salvage once-promising anti-cancer agents

11.06.2002


A group of anti-cancer agents that once produced dismal results in clinical trials could once again be a promising tool in fighting the deadly disease, thanks to research by a team of chemists at the University of Washington and in Germany.



The agents, called maytansinoids, were first discovered in the 1970s when scientists looked for tumor inhibitors in a rare Ethiopian plant. The same group of maytansinoids was later isolated from a new bacteria species. The compounds held great promise because of their exceptional potency, and early tests indicated they were effective against some tumors and leukemia lines.

But the compounds were difficult to come by in quantities large enough to manufacture drugs and, when potential treatments were developed, they proved too strong when tested in clinical trials.


"These compounds were too potent. They were toxic to patients," said Tin-Wein Yu, a UW research assistant professor of chemistry. "We thought if we could modify the chemical structure to make the agents more appropriate for cancer patients, that would be beneficial. And we could use the same strategy to ease the side effects."

UW researchers headed by Heinz Floss, an emeritus chemistry professor, teamed with researchers from Rheinische Wilhems-Universität in Bonn, Germany, to develop ways of modifying genes that create maytansinoids and then produce cancer treatments that are more effective against tumors and better tolerated by patients.

Their efforts essentially relied on using the modified genes to produce the anti-cancer agent. The first step was to locate the genes that control maytansinoid formation and clone them. They first gained access to genes that control maytansinoid production, then altered the maytansinoid structure at the genetic level.

"If you can manipulate the production genes, it makes the process much easier," said Yu, who is the lead author of a paper describing the work in the June 11 issue of the Proceedings of the National Academies of Science.

To clone the genes, the researchers snipped the genome of the bacteria (Actinosynnema pretiosum) into small bits to create a genomic library. They used a gene that already had been cloned from another microorganism (Amycolatopsis mediterranei) as a reference to screen the library and find the genes needed for maytansinoid construction. Having access to the genes that control the formation of maytansinoids allows scientists to manipulate the structure of the anti-cancer agent at the DNA level.

The work, for which the UW has applied for a patent, allows for a detailed analysis of maytansinoid formation at both the genetic and biochemical levels. It also sets the stage to modify maytansinoids through genetic engineering, so they are less toxic to humans, are more effective against cancer and bond easily with delivery agents.

Several companies are in discussions about the possibility of using the research to combine maytansinoids with antibodies that target tumors. The antibodies would search out specific cancer antigens attach only to cancer cells, Yu said. The maytansinoids then can enter the cancer cells and destroy them without damaging surrounding healthy tissue.

"It is a warhead strategy," he said.

The work has provided researchers with a number of options other than simply deciphering the biosynthesis of pre-existing compounds, Yu said. Manipulating the structure, he said, ultimately could lead to development of more effective cancer drugs.



The research was funded by grants from the National Institutes of Health, Deutsche Forschungsgemeinschaft (Germany’s central public funding organization for academic research), the Fonds der Chemischen Industrie in Germany and the North Atlantic Treaty Organization.

For more information, contact Yu at (206) 543-3791 or yu@u.washington.edu

Vince Stricherz | EurekAlert

More articles from Health and Medicine:

nachricht Candidate Ebola vaccine still effective when highly diluted, macaque study finds
21.10.2019 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Autism spectrum disorder risk linked to insufficient placental steroid
21.10.2019 | Children's National Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers watch quantum knots untie

After first reporting the existence of quantum knots, Aalto University & Amherst College researchers now report how the knots behave

A quantum gas can be tied into knots using magnetic fields. Our researchers were the first to produce these knots as part of a collaboration between Aalto...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Composite metal foam outperforms aluminum for use in aircraft wings

23.10.2019 | Materials Sciences

Researchers watch quantum knots untie

23.10.2019 | Physics and Astronomy

A technology to transform 2D planes into 3D soft and flexible structures

23.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>