Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research could help reverse the biological clock for dementia patients

25.01.2008
Medical experts in the North-East of England believe they could have found the key to turning back the brain’s biological clock and reverse the effects of dementia and memory loss.

Pioneering research at the University of Sunderland has shown that regular exposure to safe low level infra-red light can improve learning performance and kick-start the cognitive function of the brain.

The results are a scientific breakthrough as to date medical treatments for dementia can only slow down brain deterioration and now human trials are to start to see if the treatment could provide a cure to illnesses like Alzheimers.

Independent research carried out at Sunderland has demonstrated that low power infra-red (1072nm) can improve the learning performance.

The low levels of infra-red light used are completely safe and occur naturally in sunlight. They are currently being used in innovative new machines for the treatment of cold sores, which have been approved for NHS prescription.

Experts claim that early stage dementia patients should see an improvement in their cognitive function within four weeks, by wearing a lightweight helmet in their home for just ten minutes a day.

Human testing of the ground-breaking infra-red treatment on the brain is due to start this summer and medical experts hope this will halt and even reverse the effects of dementia.

The new infra-red device was created by Dr Gordon Dougal, a director of Virulite – a medical research company based in Newton Aycliffe, County Durham – which is also behind the innovative cold sore machine.

He came up with the idea of using a safe level of infra red light on the human brain after it had proved effective in the treatment of cold sores – a process that relies on boosting the cells within the body responsible for killing the virus, rather than attacking it.

Dr Dougal said: “The implications of this research at the University of Sunderland are enormous – so much so that in the future, we could be able to affect and change the rate at which our bodies age.

“As we get older, cells stop repairing themselves and we age because our cells lose the desire to regenerate and repair themselves. This ultimately results in cell death and decline of the organ functions, for the brain resulting in memory decay and deterioration in general intellectual performance.

“But what if there was a technology that told the cells to repair themselves and that technology was something as simple as a specific wavelength of light? Near infrared light penetrates human tissues relatively well, even penetrating the human skull, just as sunlight passes through frosted glass.”

Dr Dougal, who claims that ten minutes of exposure to the infrared light daily would have the desired effect on the brain, added: “Currently all you can do with dementia is to slow down the rate of decay – this new process will not only stop that rate of decay but partially reverse it.”

The research by University of Sunderland neuroscientist, Dr Abdel Ennaceur has led Dr Dougal to arrange clinical trials with patients with age related memory problems.”

Fellow neuroscientist Paul Chazot, who helped carry out the research, added: “The treatment can indeed improve learning ability. The results are completely new – this has never been looked at before.

“Dr Dougal’s treatment might have some potential in improving learning in a human situation by delivering infra red through the thinnest parts of the skull to get maximum access to the brain.”

Further research work will continue in this area, funded by CELS, who support Healthcare research and development in universities, hospitals and companies within the North East of England.

Tony Kerr | alfa
Further information:
http://www.sunderland.ac.uk/caffairs/septhm.htm

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>