Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes linked with Lupus are revealed, giving hope for new treatments

21.01.2008
Scientists have identified a number of genes involved in Lupus, a devastating autoimmune disease that affects around 50,000 people in the UK, in new research published today in the journal Nature Genetics.

In an international genetic study of more than 3,000 women, researchers found evidence of an association between Lupus (systemic lupus erythematosus or SLE) and mutations in several different genes.

The findings, by scientists from Imperial College London and institutions in the USA and Sweden, will enable researchers to investigate the specific pathways and precise molecular mechanisms involved in developing Lupus, potentially opening up options for new therapies. Lupus is a complex condition, mostly affecting women, which frequently causes skin rash, joint pains and malaise, and which can also lead to inflammation of the kidneys and other internal organs.

The scientists discovered the strongest associations with Lupus in three genes: ITGAM, PXK, and one mutation within a gene KIAA1542, a gene whose function is not definitely known.

The ITGAM gene provides code for a molecule involved in a system, known as the complement system, which forms part of the body's immune response. Complement is a series of proteins in the blood which is designed to stick to the surface of bacteria and bugs in order to enable them to be attacked by the immune system.

The discovery of variations in the ITGAM gene in people with Lupus supports the idea that abnormalities in the way complement and antibodies bind to immune cells play a key part in the disease. It is already known that people with Lupus often have low levels of complement in their blood.

The role of the molecules encoded by the PXK gene and KIAA1542 genes in Lupus is less easy to predict, and the discovery of their association is more surprising to the researchers, opening up new avenues of research into the disease.

Other genes, including LYN and BLK, also appear to be involved in Lupus. These genes affect the function of B cells, which play a key role in the production of antibodies. Autoantibodies, which attack the body's own proteins, contribute to the damage done to the body in Lupus.

The new research also confirms links identified in previous studies between Lupus, as well as other autoimmune diseases, and certain other genes.

Professor Timothy Vyse, a Wellcome Trust Senior Fellow from the Division of Medicine at Imperial College London, and one of the authors of the study, said: "Lupus is a complex disease, which is hard to diagnose, and it can cause many different and unpredictable problems for patients. Living with Lupus can be really tough. We currently can treat the disease by suppressing the immune system, but we urgently need to understand in much more detail what goes wrong with the immune system so that we can design better treatments. This study represents a milestone in progress towards unravelling the secrets of the disease.

"We are continuing to work on refining these genetic studies. Blood samples from patients with Lupus have helped us already and we are very grateful to those who have given us samples. We always need more samples and would like to hear from anyone with Lupus who would like to help us by giving blood samples for this important research," added Professor Vyse.

The researchers reached their conclusions after comparing the genetic makeup of 720 women of European descent with Lupus and 2,337 women without Lupus. They looked at mutations in the building blocks, called nucleotides, which make up DNA.

There are mutations in around one in every 600 nucleotides and the scientists examined over 317,000 how many of these mutations to find those specific to Lupus. These mutations are known as single-nucleotide polymorphisms.

The researchers confirmed their results by comparing another set of genetic data for 1,846 women with Lupus and 1,825 women without Lupus.

The study was carried out by researchers in the International SLE consortium (SLEGEN), which includes scientists from the USA, Sweden and the UK. It was supported by the Alliance for Lupus Research and the National Institutes of Health.

Laura Gallagher | alfa
Further information:
http://www.wellcome.ac.uk
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>