Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein shredder regulates fat metabolism in the brain

11.05.2020

A protein shredder that occurs in cell membranes of brain cells apparently also indirectly regulates the fat metabolism. This is shown by a recent study by the University of Bonn. The shredder, known as gamma-secretase, is considered a possible target for drugs against cancer and Alzheimer's disease. However, the results suggest that such agents may have long-range effects that need to be watched closely. The study has now been published in the journal "Life Science Alliance".

Every cell in the body is surrounded by a fatty film called the plasma membrane. It also contains numerous proteins that span the membrane from outside to inside and act as sensors for the cell:


After inhibition of secretase, the astrocytes (their cell nucleus is stained blue), accumulate large quantities of lipid droplets (red). These disrupt the normal cell function.

© AG Walter/Uni Bonn

When they encounter certain molecules on the outside, they generate a signal on the inside of the membrane, thereby regulating certain reactions within the cell. Other membrane proteins are able to transport certain substances into the cell.

Gamma-secretase plays an important role in the release of membrane-anchored signaling proteins. But it is also a "cleaning specialist" for discarded membrane proteins: It breaks down the proteins within the cell membrane for further disposal.

With this function, the secretase has been in the focus of Alzheimer’s research for almost two decades: Many brain cells contain a protein called APP in their membrane. When gamma-secretase breaks down APP, one of the fragments is released into the brain fluid: the so-called Abeta peptide.

This peptide is the main constituent of the plaques found in the damaged brain areas of Alzheimer's patients. "Originally, it was therefore hoped that the inhibition of gamma-secretase could slow down Alzheimer's disease," explains Prof. Dr. Jochen Walter. "Unfortunately, that hasn't proved successful so far."

Waste in the membrane

It is now known that gamma secretase exerts important roles in the functioning of cells. If it fails, cellular membranes gradually fills up with waste. This could for instance impair the effective uptake of certain molecules into the cells.

The current study shows serious consequences of such a failure. The APP also plays a key role here: "When we inhibit gamma secretase in cell cultures, APP accumulates in the membranes," explains Walter's colleague Dr. Esteban Gutierrez. "This in turn hinders the absorption of so-called lipoproteins from the environment."

This mechanism triggers a fatal process. Lipoproteins are particles of proteins and fat-like molecules, the lipids. If too few of them enter the cell, the cell suspects a lipid deficiency. To remedy this, the cell increases its own lipid synthesis.

"We have shown that inhibition of the causes a strong activation of a central regulator of lipid synthesis called LXR," says Gutierrez. The lipids are partially transported out of the cell; however, due to the disturbed lipoprotein uptake, the cell does not receive feedback that this measure was successful and continues to produce more lipids.

This means that numerous fat droplets accumulate inside the cell over time. In excessive quantities, this leads to adiposis in the cell interior, which can disrupt important cellular functions.

"Other studies have already shown that a disruption of the lipid metabolism in the brain can also contribute to the development of Alzheimer's disease," explains Prof. Walter. "Our study points to a mechanism by which this could happen." The inhibition of gamma secretase may therefore cause an opposite effect one would expect from this measure.

Inhibition of secretase hinders the division of cancer cells

However, it is more promising in another context - the fight against cancer. The cell membrane contains proteins that stimulate cell division. If gamma-secretase is inactivated in tumor cells, these proteins are no longer released from the membrane, and thus, the cancer cells can no longer replicate as quickly. "In this case, too, the treatment causes side effects," Walter emphasizes. "As long as they are mainly confined to cancer cells, this is probably not a major problem; nevertheless, one should keep an eye on them."

The publication is also an expression of successful collaboration within the university: With the laboratories of Professors Jochen Walter, Dieter Lütjohann and Christoph Thiele, neuroscientists, pharmacologists and biochemists from the Faculty of Medicine and the Faculty of Mathematics and Natural Sciences at the University of Bonn worked together hand in hand on this project.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jochen Walter
Klinik und Poliklinik für Neurologie
Universität Bonn
Tel. +49(0)-228/28719782
E-mail: Jochen.Walter@ukbonn.de

Originalpublikation:

Esteban Gutierrez, Dieter Lütjohann, Anja Kerksiek, Marietta Fabiano, Naoto Oikawa, Lars Kuerschner, Christoph Thiele and Jochen Walter: Importance of γ-secretase in the regulation of liver X receptor and cellular lipid metabolism; Life Science Alliance; https://doi.org/10.26508/lsa.201900521

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>