Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ötzi's blood detected

02.05.2012
5,000 year old red blood cells discovered. Oldest blood known to modern science.

His DNA has been decoded; samples from his stomach and intestines have allowed us to reconstruct his very last meal. The circumstances of his violent death appear to have been explained.


AFM topography image of a red blood cell from the Icemans arrow wound at his back (rainbow colores).
Marek Janko


Three dimensional AFM image and spectroscopic scan of a blood clot found in the arrow wound at the Icemans back.
Marek Janko

However, what had, at least thus far, eluded the scientists, was identifying any traces of blood in Ötzi, the 5,000 year old glacier mummy. Examination of his aorta had yielded no results. Yet recently, a team of scientists from Italy and Germany, using nanotechnology, succeeded in locating red blood cells in Ötzi’s wounds, thereby discovering the oldest traces of blood to have been found anywhere in the world.

“Up to now there had been uncertainty about how long blood could survive – let alone what human blood cells from the Chalcolithic period, the Copper Stone Age, might look like.” This is how Albert Zink, Head of the Institute for Mummies and the Iceman at the European Academy, Bozen-Bolzano (EURAC) explains the starting point for the investigations which he undertook with Marek Janko and Robert Stark, materials scientists at the Center of Smart Interfaces at Darmstadt Technical University. Even in modern forensic medicine it has so far been almost impossible to determine how long a trace of blood had been present at a crime scene. Scientists Zink, Janko and Stark are convinced that the nanotechnological methods which they tested out on Ötzi’s blood to analyse the microstructure of blood cells and minute blood clots might possibly lead to a break-through in this area.

The team of scientists used an atomic force microscope to investigate thin tissue sections from the wound where the arrow entered Ötzi’s back and from the laceration on his right hand. This nanotechnology instrument scans the surface of the tissue sections using a very fine probe. As the probe moves over the surface, sensors measure every tiny deflection of the probe, line by line and point by point, building up a three-dimensional image of the surface. What emerged was an image of red blood cells with the classic “doughnut shape”, exactly as we find them in healthy people today. “To be absolutely sure that we were not dealing with pollen, bacteria or even a negative imprint of a blood cell, but indeed with actual blood cells, we used a second analytical method, the so-called Raman spectroscopy method”, report Marek Janko and Robert Stark, who, with Albert Zink, are also members of the Center for NanoSciences in Munich. In Raman spectroscopy the tissue sample is illuminated by a laser beam and analysis of the spectrum of the scattered light allows one to identify various molecules. According to the scientists, the images derived from this process corresponded to present-day samples of human blood.

Whilst examining the wound at the point where the arrow entered the body, the team of scientists also identified fibrin, a protein involved in the clotting of blood. “Because fibrin is present in fresh wounds and then degrades, the theory that Ötzi died straight after he had been injured by the arrow, as had once been mooted, and not some days after, can no longer be upheld,” explains Albert Zink.

The team has just published the results of this research in the “Journal of the Royal Society Interface”.

Julia Reichert | idw
Further information:
http://www.eurac.edu

Further reports about: Raman spectroscopy blood cell blood clot human blood red blood cells Ötzi

More articles from Health and Medicine:

nachricht New 3D cultured cells mimic the progress of NASH
02.04.2020 | Tokyo University of Agriculture and Technology

nachricht Geneticists are bringing personal medicine closer to recently admixed individuals
02.04.2020 | Estonian Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>