Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH scientists link quickly spreading gene to Asian MRSA epidemic

23.04.2012
National Institutes of Health (NIH) scientists and their colleagues in China have described a rapidly emerging Staphylococcus aureus gene, called sasX, which plays a pivotal role in establishing methicillin-resistant S. aureus (MRSA) epidemics in most of Asia.

Senior author Michael Otto, Ph.D., of NIH's National Institute of Allergy and Infectious Diseases, says these findings illustrate at the molecular level how MRSA epidemics may emerge and spread. Moreover, their study identifies a potential target for novel therapeutics.

MRSA is a leading cause of severe infections that occur predominantly in hospitals. MRSA epidemics happen in waves, with old clones of MRSA bacteria disappearing and new clones emerging, a process whose molecular underpinnings are not fully understood.

Previous data indicated that the sasX gene is extremely rare. Therefore, the researchers were surprised when they analyzed 807 patient samples of invasive S. aureus taken over the past decade from three Chinese hospitals. Their data showed that sasX is more prevalent in MRSA strains from China than previously thought, and the gene's frequency is increasing significantly: From 2003 to 2011, the percentage of MRSA samples containing sasX almost doubled, from 21 to 39 percent.

This finding suggests that the sasX gene is involved in molecular processes that help MRSA spread and cause disease. The researchers determined in laboratory and mouse studies that sasX helps bacteria to colonize in the nose, cause skin abscesses and lung disease, and evade human immune defenses. Further, the scientists say their work provides additional evidence for a long-held theory that the emergence of new clones of highly virulent MRSA bacteria occurs through horizontal gene transfer, the exchange of DNA between different strains. Notably, the sasX gene is embedded in a so-called mobile genetic element, a DNA segment that can transfer easily between strains.

Most sasX-positive samples found in the study were from the ST239 group, the predominant MRSA lineage in China and large parts of Asia. However, because the scientists have already observed the transfer of sasX to MRSA clones other than those belonging to the ST239 group, Dr. Otto and his team predict that the frequency of sasX will increase internationally. They plan to both monitor its spread and work to develop therapeutics to prevent MRSA strains expressing sasX from colonizing and infecting people.

Min Li, Ph.D., associate professor at Fudan University in Shanghai, a former postdoctoral fellow in Dr. Otto's laboratory, designed the study. Other collaborators are from the University of California, San Francisco.

ARTICLE:
M Li et al. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nature Medicine DOI: 10.1038/nm.2692 (2012).
WHO:
Michael Otto, Ph.D., senior investigator, Laboratory of Human Bacterial Pathogenesis, NIAID. Dr. Otto is an expert in the molecular basis of pathogenesis in staphylococci.
CONTACT:
To schedule interviews, please contact Ken Pekoc, (301) 402-1663, kpekoc@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH...Turning Discovery Into Health

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

Further reports about: DNA Human vaccine Infectious Diseases MRSA NIAID NIH ST239 health services medical research

More articles from Health and Medicine:

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht When wheels and heads are spinning - DFG research project on motion sickness in automated driving
22.05.2019 | Technische Universität Berlin

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>