Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural balls and strikes: Where categories live in the brain

16.01.2012
Brain circuits for visual categorization revealed by new experiments

Hundreds of times during a baseball game, the home plate umpire must instantaneously categorize a fast-moving pitch as a ball or a strike. In new research from the University of Chicago, scientists have pinpointed an area in the brain where these kinds of visual categories are encoded.

While monkeys played a computer game in which they had to quickly determine the category of a moving visual stimulus, neural recordings revealed brain activity that encoded those categories. Surprisingly, a region of the brain known as the posterior parietal cortex demonstrated faster and stronger category-specific signals than the prefrontal cortex, an area that is typically associated with higher level cognitive functions.

"This is as close as we've come to the source of these abstract signals" said David Freedman, PhD, assistant professor of neurobiology at the University of Chicago. "One of the main points this study suggests is that the parietal cortex is more involved in the categorization process than we had expected."

Organizing the chaos of the surrounding world into categories is one of the brain's key functions. For instance, the brain can almost immediately classify a broad range of four-wheeled vehicles into the general category of "car," allowing a person to quickly take the appropriate action. Neuroscientists such as Freedman and his laboratory team are searching for the brain areas responsible for storing and assigning these categories.

"The number of decisions we make per minute is remarkable," Freedman said. "Understanding that process from a basic physiological perspective is bound to lead to ways to improve the process and to help people make better decisions. This is particularly important for patients suffering from neurological illnesses, brain injuries or mental illness that affect decision making."

Ten years ago, experiments by Freedman and his colleagues found neurons were encoding category signals in the prefrontal cortex (PFC), a region thought to control important mental tasks such as decision making, rule learning and short-term memory. But in subsequent experiments, Freedman found a region of the parietal cortex called the lateral intraparietal area (LIP), thought to be primarily involved in basic visual and spatial processing, also encoded category information.

For the new study, to be published in the journal Nature Neuroscience, Freedman and graduate student Sruthi Swaminathan conducted the first direct comparison of prefrontal cortex and parietal cortex during categorization tasks. Monkeys were taught a simple game in which they classified dots moving in different directions into one of two categories. The subjects were shown two sets of moving dots one second apart, then held or released a joystick based on whether the two stimuli belonged to the same category or different categories.

During the task, scientists recorded neural activity in PFC and LIP. Neurons in both areas changed their activity according to the learned categories; for example, increasing firing for one category and decreasing for the other. However, category-specific neurons in LIP exhibited stronger and faster (by about 70 milliseconds) changes in activity during the task than those recorded from PFC.

"The relative timing of signals in the two brain areas gives us an important clue about their roles in solving the categorization task. Since category information appeared earlier in parietal cortex than prefrontal cortex, it suggests that parietal cortex might be more involved in the visual categorization process, at least during this task," Freedman said.

More evidence for the primacy of parietal cortex was provided by an experiment where scientists threw their subjects a curveball. The monkeys were shown an ambiguous set of moving dots on the border between the two learned categories, then asked to compare them with a second set of non-ambiguous dots — a test with no correct answer. The subjects were required to make a decision about which category the ambiguous stimuli belonged to, and once again LIP neurons corresponded to that decision more closely than PFC.

"During the decision process, parietal cortex activity is not just correlated — it even predicts ahead of time what the monkey will tell you," Swaminathan said. "You can record neuronal activity in parietal cortex and, in many cases, predict with great reliability what the monkey will report."

In humans, the ambiguous stimuli would be similar to an umpire deciding whether a borderline pitch was a ball or a strike — a highly specialized real world example of the visual motion categorization task used in these experiments, Freedman said.

"In a lot of ways, that's the process we hope to understand, this umpire calling balls and strikes," he said. "It's an interesting learned behavior that's highly critical for an individual to perform with great reliability, and it's a spatial categorization with a sharp boundary, so we think it's the same process."

Next, Freedman's laboratory hopes to look at how the brain changes during the category-learning process, examining whether the category signals first arise in the parietal cortex or start in the prefrontal cortex before transferring to visual regions of the brain. The results may help scientists reverse engineer some of the brain's most important tasks in daily life.

"Making effective decisions and evaluating every situation that you're in moment by moment is critical for successful behavior," Freedman said. "We're really interested in what changes occur in the brain to allow you to recognize not just the features of a stimulus, but what it is and what it means."

The paper, "Preferential encoding of visual categories in parietal cortex compared to prefrontal cortex," will be published online Jan. 15 by the journal Nature Neuroscience [doi: 10.1038/nn.3016]. Funding for the study was provided by the National Institutes of Health, the National Science Foundation, the Alfred P. Sloan Foundation and the Brain Research Foundation.

For more news from the University of Chicago Medical Center, follow us on Twitter at @UChicagoMed, or visit our Facebook page at facebook.com/UChicagoMed, our research blog at sciencelife.uchospitals.edu, or our newsroom at uchospitals.edu/news/.

Robert Mitchum | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Health and Medicine:

nachricht Remdesivir prevents MERS coronavirus disease in monkeys
14.02.2020 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Recent advances in addressing tuberculosis give hope for future
12.02.2020 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease

17.02.2020 | Life Sciences

Artificial intelligence is becoming sustainable!

17.02.2020 | Information Technology

Catalyst deposition on fragile chips

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>