Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural balls and strikes: Where categories live in the brain

16.01.2012
Brain circuits for visual categorization revealed by new experiments

Hundreds of times during a baseball game, the home plate umpire must instantaneously categorize a fast-moving pitch as a ball or a strike. In new research from the University of Chicago, scientists have pinpointed an area in the brain where these kinds of visual categories are encoded.

While monkeys played a computer game in which they had to quickly determine the category of a moving visual stimulus, neural recordings revealed brain activity that encoded those categories. Surprisingly, a region of the brain known as the posterior parietal cortex demonstrated faster and stronger category-specific signals than the prefrontal cortex, an area that is typically associated with higher level cognitive functions.

"This is as close as we've come to the source of these abstract signals" said David Freedman, PhD, assistant professor of neurobiology at the University of Chicago. "One of the main points this study suggests is that the parietal cortex is more involved in the categorization process than we had expected."

Organizing the chaos of the surrounding world into categories is one of the brain's key functions. For instance, the brain can almost immediately classify a broad range of four-wheeled vehicles into the general category of "car," allowing a person to quickly take the appropriate action. Neuroscientists such as Freedman and his laboratory team are searching for the brain areas responsible for storing and assigning these categories.

"The number of decisions we make per minute is remarkable," Freedman said. "Understanding that process from a basic physiological perspective is bound to lead to ways to improve the process and to help people make better decisions. This is particularly important for patients suffering from neurological illnesses, brain injuries or mental illness that affect decision making."

Ten years ago, experiments by Freedman and his colleagues found neurons were encoding category signals in the prefrontal cortex (PFC), a region thought to control important mental tasks such as decision making, rule learning and short-term memory. But in subsequent experiments, Freedman found a region of the parietal cortex called the lateral intraparietal area (LIP), thought to be primarily involved in basic visual and spatial processing, also encoded category information.

For the new study, to be published in the journal Nature Neuroscience, Freedman and graduate student Sruthi Swaminathan conducted the first direct comparison of prefrontal cortex and parietal cortex during categorization tasks. Monkeys were taught a simple game in which they classified dots moving in different directions into one of two categories. The subjects were shown two sets of moving dots one second apart, then held or released a joystick based on whether the two stimuli belonged to the same category or different categories.

During the task, scientists recorded neural activity in PFC and LIP. Neurons in both areas changed their activity according to the learned categories; for example, increasing firing for one category and decreasing for the other. However, category-specific neurons in LIP exhibited stronger and faster (by about 70 milliseconds) changes in activity during the task than those recorded from PFC.

"The relative timing of signals in the two brain areas gives us an important clue about their roles in solving the categorization task. Since category information appeared earlier in parietal cortex than prefrontal cortex, it suggests that parietal cortex might be more involved in the visual categorization process, at least during this task," Freedman said.

More evidence for the primacy of parietal cortex was provided by an experiment where scientists threw their subjects a curveball. The monkeys were shown an ambiguous set of moving dots on the border between the two learned categories, then asked to compare them with a second set of non-ambiguous dots — a test with no correct answer. The subjects were required to make a decision about which category the ambiguous stimuli belonged to, and once again LIP neurons corresponded to that decision more closely than PFC.

"During the decision process, parietal cortex activity is not just correlated — it even predicts ahead of time what the monkey will tell you," Swaminathan said. "You can record neuronal activity in parietal cortex and, in many cases, predict with great reliability what the monkey will report."

In humans, the ambiguous stimuli would be similar to an umpire deciding whether a borderline pitch was a ball or a strike — a highly specialized real world example of the visual motion categorization task used in these experiments, Freedman said.

"In a lot of ways, that's the process we hope to understand, this umpire calling balls and strikes," he said. "It's an interesting learned behavior that's highly critical for an individual to perform with great reliability, and it's a spatial categorization with a sharp boundary, so we think it's the same process."

Next, Freedman's laboratory hopes to look at how the brain changes during the category-learning process, examining whether the category signals first arise in the parietal cortex or start in the prefrontal cortex before transferring to visual regions of the brain. The results may help scientists reverse engineer some of the brain's most important tasks in daily life.

"Making effective decisions and evaluating every situation that you're in moment by moment is critical for successful behavior," Freedman said. "We're really interested in what changes occur in the brain to allow you to recognize not just the features of a stimulus, but what it is and what it means."

The paper, "Preferential encoding of visual categories in parietal cortex compared to prefrontal cortex," will be published online Jan. 15 by the journal Nature Neuroscience [doi: 10.1038/nn.3016]. Funding for the study was provided by the National Institutes of Health, the National Science Foundation, the Alfred P. Sloan Foundation and the Brain Research Foundation.

For more news from the University of Chicago Medical Center, follow us on Twitter at @UChicagoMed, or visit our Facebook page at facebook.com/UChicagoMed, our research blog at sciencelife.uchospitals.edu, or our newsroom at uchospitals.edu/news/.

Robert Mitchum | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>