Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mountaineers measure lowest human blood oxygen levels on record

08.01.2009
The lowest ever levels of oxygen in humans have been reported in climbers on an expedition led by UCL (University College London) doctors.

The world-first measurements of blood oxygen levels in climbers near the top of Mount Everest, published in this week’s New England Journal of Medicine (NEJM), could eventually help critical care doctors to re-evaluate treatment strategies in some long-term patients with similarly low levels of blood oxygen.

The Caudwell Xtreme Everest team of climbing doctors made the measurements by taking blood from leg arteries close to the summit of Mount Everest at 8,400 metres above sea-level. The team climbed with oxygen tanks, then removed their masks 20 minutes prior to testing to equilibrate their lungs with the low-oxygen atmosphere. The team were unable to make the measurement on the summit of Everest as conditions were too severe, with temperatures at minus 25 degrees centrigrade and winds above 20 knots.

Having descended a short distance from the summit, the doctors removed their gloves, unzipped their down suits and drew blood from the femoral artery in the groin. Blood collected from four team members was then carried back down the mountain to be analysed within two hours at a science laboratory set up at the team’s camp at 6,400 metres on Everest.

The purpose of the study was to establish what has long been suspected – that high-altitude climbers have incredibly low levels of oxygen in their blood, which at sea-level would only be seen in patients close to death. The expedition found the average arterial oxygen level to be 3.28 kilopascals or kPa (with the lowest value being 2.55 kPa); the normal value in humans is 12-14 kPa and patients with a level below 8 kPa are considered critically ill. Based on calculations of the expected level of oxygen in the blood, the authors also speculate that accumulation of fluid in the lungs as a result of the high altitude might have contributed to the low oxygen levels.

Caudwell Xtreme Everest expedition leader Dr Mike Grocott, a UCL Senior Lecturer in Critical Care Medicine, said: “By observing healthy individuals at high altitude where oxygen is scarce, we can learn about physiological changes that can improve critical care at the hospital bedside, because low oxygen levels are an almost universal problem in critical care. These extraordinary low levels of oxygen found in high-altitude climbers may cause doctors looking after critically ill patients to revaluate treatment goals in some patients who have been ill for some time and might have adapted to low levels of oxygen in the blood. However, our findings will need further careful evaluation before they can be translated into clinical practice. We hope that ongoing research will eventually lead to better treatments for patients with acute respiratory distress syndrome (ARDS), cystic fibrosis, emphysema, septic shock, ‘blue baby’ syndrome and other critical illnesses.”

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>