Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method makes it easier to treat prostate and pancreatic cancer

15.02.2012
Laser light in combination with certain drugs – known as photodynamic therapy – can destroy cancer tumours, but is today used mostly to cure skin cancer.

The reason that internal tumours are not treated with the method is that the technology does not exist to check that the precise amount of light is administered. However, software developed by researchers in atomic physics at Lund University in Sweden looks like being able to solve the problem.

“I think we are about to see a real breakthrough, both for us and for other research groups around the world who conduct research on cancer treatment using laser light”, says Johannes Swartling, Doctor of Atomic Physics at Lund University and Chief Technical Officer at SpectraCure, the company that is now developing the software.

The software’s unique feature is that it uses the optical fibres for more than simply emitting light. Intermittently they also gather information about the tumour, which they send back to the laser instrument.

“In this way, the software can continually calculate the optimal light dose and adjust it if necessary. The entire tumour must be removed, while damage to adjacent organs must be avoided”, says Johannes Swartling.

According to the researchers, the software could also be used with other light therapies that use LEDs or infra-red lasers.

Tests on prostate cancer patients in Sweden have shown that the method also works for internal tumours, and in the spring a clinical study on recurrent prostate cancer will begin in the US and Canada. An application for approval to carry out the study is pending. Meanwhile, the same laser light technology is being tested in the UK on pancreatic cancer.

“The advantage of laser light is that it appears that side effects can be minimised. With current treatment methods, prostate cancer patients who are cured risk both impotence and incontinence.”

In addition, traditional treatments entail a risk of cancer recurrence, says Johannes Swartling.

The international tests focus on adjusting dosage, guaranteeing safety and ensuring the effectiveness of treatment. If everything goes smoothly, SpectraCure hopes the method will be approved by the US Food and Drug Administration and Health Canada within a few years.

“This really could be revolutionary”, says Sune Svanberg, Professor of Laser Physics at Lund University and one of the researchers behind the technology.

“The new technology has great potential to help certain patient groups, for whom current treatment methods have major limitations”, says Professor Dr Katarina Svanberg, Department of Oncology, Lund University, who has been involved in the medical side of the development of the method.

How photodynamic therapy works
Before the procedure, the patient is given a light-activated drug, which has no effect without light. The drug spreads throughout the body, including to the area of the tumour. The patient then receives a local or general anaesthetic and the doctor inserts needles with optical fibres into the area affected. These channel light into the cancer tumour. When the light comes into contact with the light-activated drug, it reacts with the surrounding oxygen, causing the cells in the target area to die.

The hardware and software are based on patents developed by atomic physicists in Lund, led by Sune Svanberg and Stefan Andersson-Engels. The idea was to allow the same optical fibres used for treatment to be used for diagnostic measurements that make it possible to calculate the light dose required. The method was soon seen to be practicable and has been developed over the years, now by SpectraCure. The implementation has been carried out by programmers.

For more information, please contact: Stefan Andersson-Engels, Professor of Atomic Physics, +46 46 222 3121, Stefan.Andersson-Engels@fysik.lth.se , Johannes Swartling, +46 708 233680, jsw@spectracure.com or Jens Nilsen, CEO SpectraCure, +46 706 878712, jn@spectracure.com.

High resolution photographs of Stefan Andersson-Engels, Johannes Swartling and Sune Svanberg can be found in the Lund University image bank; enter the name required in the search field. Company photographs from Spectracure are also available; enter “Spectracure” in the search field.

Helga Ekdahl Heun | idw
Further information:
http://www.vr.se

Further reports about: Atomic Physic cancer patients laser light laser system optical fibre prostate cancer

More articles from Health and Medicine:

nachricht Genetic differences between strains of Epstein-Barr virus can alter its activity
18.07.2019 | University of Sussex

nachricht Machine learning platform guides pancreatic cyst management in patients
18.07.2019 | American Association for the Advancement of Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>