Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-Cost ‘Cooling Cure’ Could Avert Brain Damage in Oxygen-Starved Babies

22.03.2013
When babies are deprived of oxygen before birth, brain damage and disorders such as cerebral palsy can occur.
Extended cooling can prevent brain injuries, but this treatment is not always available in developing nations where advanced medical care is scarce. To address this need, Johns Hopkins undergraduates have devised a low-tech $40 unit to provide protective cooling in the absence of modern hospital equipment that can cost $12,000.

The device, called the Cooling Cure, aims to lower a newborn’s temperature by about 6 degrees F for three days, a treatment that has been shown to protect the child from brain damage if administered shortly after a loss of oxygen has occurred. Common causes of this deficiency are knotting of the umbilical cord or a problem with the mother’s placenta during a difficult birth. In developing regions, untrained delivery, anemia and malnutrition during pregnancy can also contribute to oxygen deprivation.
Johns Hopkins students designed this low-cost prototype to cool and prevent brain damage in oxygen-deprived babies in developing regions where advanced medical care is unavailable. Photo: Will Kirk/Johns Hopkins University

In a recent issue of the journal Medical Devices: Evidence and Research, the biomedical engineering student inventors and their medical advisors reported successful animal testing of the Cooling Cure prototype. The device is made of a clay pot, a plastic-lined burlap basket, sand, instant ice-pack powder, temperature sensors, a microprocessor and two AAA batteries. To activate it, just add water.

The device could help curtail a serious health problem called hypoxic ischemic encephalopathy, which is triggered by oxygen deficiency in the brain. Globally, more than half of the newborns with a severe form of this condition die, and many of the survivors are diagnosed with cerebral palsy or other brain disorders. The problem is particularly acute in impoverished regions where pregnant women do not have easy access to medical specialists or high-tech hospital equipment. The inventors say Cooling Cure could address this issue.

“The students came up with a neat device that’s easy for non-medical people to use. It’s inexpensive and user-friendly,” said Michael V. Johnston, a Johns Hopkins School of Medicine pediatric neurology professor who advised the undergraduate team. Johnston also is chief medical officer and executive vice president of the Kennedy Krieger Institute, an internationally recognized center in Baltimore that helps children and adolescents with disorders of the brain, spinal cord and musculoskeletal systems.

For the past 25 years, Johnston has been studying ways to protect a newborn’s brain, including the use of costly hospital cooling units that keep brain cells from dying after an oxygen deficiency. Several years ago, while visiting Egypt, he learned that local doctors were using window fans or chilled water bottles in an inadequate effort to treat oxygen-deprived babies. When he returned to Baltimore, Johnston and Ryan Lee, a pediatric neurologist and postdoctoral fellow at Kennedy Krieger, discussed the problem with Robert Allen, a Johns Hopkins associate research professor in a biomedical engineering program that requires undergraduates to design and build devices to solve pressing medical problems. Allen suggested that Johnston and Lee present the baby-cooling dilemma to biomedical engineering students in the school’s Center for Bioengineering Innovation and Design.

Johns Hopkins undergraduates, from left, John J. Kim, Simon Ammanuel and Nathan Buchbinder were part of a biomedical engineering team that invented the baby-cooling device. Photo: Will Kirk/Johns Hopkins University

The challenge was accepted in 2011 by a team of Whiting School of Engineering undergraduates. With an eye toward simplicity and low-cost, the students designed a cooler made of a clay pot and a plastic-lined basket, separated by a layer of sand and urea-based powder. This powder is the type used in instant cold-packs that help reduce swelling. To activate the baby-cooling unit, water is added to the mixture of sand and powder, causing a chemical reaction that draws heat away from the upper basket, which cradles the child. (The chemical would not come into direct contact with the newborn.)

The unit’s batteries power a microprocessor and sensors that track the child’s internal and skin temperatures. Small lights flash red if the baby’s temperature is too hot, green if the temperature is correct and blue if the child is too cold. By viewing the lights, the baby’s nurse or a family member could add water to the sand to increase cooling. If the child is too cool, the caregiver could lift the child away from the chilling surface until the proper temperature is restored.

Last May, at a student invention showcase organized by the university’s Department of Biomedical Engineering, the Cooling Cure team presented its prototype, designed for a full-term newborn weighing up to nine pounds and measuring up to 18 inches in length. The team won the Linda Trinh Memorial Award, which recognized Cooling Cure as an innovative idea for a global health project. In August two of the student inventors were chosen to visit medical centers in India for a two-week trip sponsored by a group called Medical and Educational Perspectives. The group has also offered modest financial support to advance the Cooling Cure design project.

In recent months, three of the Cooling Cure’s student inventors—John J. Kim, Nathan Buchbinder and Simon Ammanual—have opted to move the project forward through animal testing and improvement of the prototype. “We’ve tried to continue this because we’ve gotten such good feedback from people,” said Kim of Santa Barbara, Calif., a leader of the student team who completed his undergraduate studies in December. “This is a nonprofit project. The main thing we want to do is to make sure that people in developing countries can benefit from this device.”

Fellow team member Buchbinder, a sophomore from Marlboro, N.J., added, “It’s not every day that you get to work on a medical device that could save lives and prevent disabilities in kids.”

Working with the Johns Hopkins Technology Transfer staff, the students and their faculty advisors have obtained a provisional patent covering the low-cost baby-cooling unit. In the near future, the student inventors hope to link up with an international medical aid group and begin human clinical trials in a developing region.

John Kim was lead author of the Medical Devices: Evidence and Research study. The co-authors—all Johns Hopkins student inventors and faculty advisors—were Buchbinder, Ammanual, Robert Kim, Erika Moore, Neil O’Donnell, Jennifer K. Lee, Ewa Kulikowicz, Soumyadipta Acharya, Robert H. Allen, Ryan W. Lee and Michael V. Johnston. The article can be viewed at http://www.dovepress.com/articles.php?article_id=11849.

Related links:

Johns Hopkins Center for Bioengineering Innovation and Design: http://cbid.bme.jhu.edu/

Department of Biomedical Engineering: http://www.bme.jhu.edu/

Whiting School of Engineering: http://engineering.jhu.edu

Johns Hopkins Technology Transfer: http://techtransfer.jhu.edu/

Kennedy Krieger Institute: http://www.kennedykrieger.org

Medical and Educational Perspectives: http://www.mepjhu.com/mep/mep.html

Johns Hopkins University news releases can be found on the World Wide Web at http://www.jhu.edu/news_info/news/. Information on automatic E-mail delivery of science and medical news releases is available at the same address.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>