Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It don't mean a thing if the brain ain't got that swing

28.07.2015

New UC Berkeley study paves the way for treating brain rhythm disorders

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another for a fraction of a second and harmonize, then go back to improvising, according to new research led by UC Berkeley.


The anterior (blue) and posterior (orange) regions of the prefrontal cortex sync up to communicate cognitive goals to one another.

Image courtesy of Bradley Voytek

These findings, reported today in the journal Nature Neuroscience, could pave the way for more targeted treatments for people with brain disorders marked by fast, slow or chaotic brain waves, also known as neural oscillations.

Tracking the changing rhythms of the healthy human brain at work advances our understanding of such disorders as Parkinson's disease, schizophrenia and even autism, which are characterized in part by offbeat brain rhythms. In jazz lingo, for example, bands of neurons in certain mental illnesses may be malfunctioning because they're tuning in to blue notes, or playing double time or half time.

"The human brain has 86 billion or so neurons all trying to talk to each other in this incredibly messy, noisy and electrochemical soup," said study lead author Bradley Voytek. "Our results help explain the mechanism for how brain networks quickly come together and break apart as needed."

Voytek and fellow researchers at UC Berkeley's Helen Wills Neuroscience Institute measured electrical activity in the brains of cognitively healthy epilepsy patients. They found that, as the mental exercises became more demanding, theta waves at 4-8 Hertz or cycles per second synchronized within the brain's frontal lobe, enabling it to connect with other brain regions, such as the motor cortex.

"In these brief moments of synchronization, quick communication occurs as the neurons between brain regions lock into these frequencies, and this measure is critical in a variety of disorders," said Voytek, an assistant professor of cognitive science at UC San Diego who conducted the study as a postdoctoral fellow in neuroscience at UC Berkeley.

Previous experiments on animals have shown how brain waves control brain activity. This latest study is among the first to use electrocorticography - which places electrodes directly on the exposed surface of the brain - to measure neural oscillations as people perform cognitively challenging tasks and show how these rhythms control communication between brain regions.

There are five types of brain wave frequencies - Gamma, Beta, Alpha, Theta and Delta - and each are thought to play a different role. For example, Theta waves help coordinate neurons as we move around our environment, and thus are key to processing spatial information.

In people with autism, the connection between Alpha waves and neural activity has been found to weaken when they process emotional images. Meanwhile, people with Parkinson's disease show abnormally strong Beta waves in the motor cortex. This locks neurons into the wrong groove and inhibits movement. Fortunately, electrical deep brain stimulation can disrupt abnormally strong Beta waves in Parkinson's and alleviate symptoms, Voytek said.

For the study, epilepsy patients viewed shapes of increasing complexity on a computer screen and were tasked with using different fingers (index or middle) to push a button depending on the shape, color or texture of the shape. The exercise started out simply with participants hitting the button with, say, an index finger each time a square flashed on the screen. But it grew progressively more difficult as the shapes became more layered with colors and textures, and their fingers had to keep up.

As the tasks became more demanding, the oscillations kept up, coordinating more parts of the frontal lobe and synchronizing the information passing between those brain regions.

"The results revealed a delicate coordination in the brain's code," Voytek said. "Our neural orchestra may need no conductor, just brain waves sweeping through to briefly excite neurons, like millions of fans in a stadium doing 'The Wave.'"

###

Other co-authors and researchers on the study are Mark D'Esposito, Robert Knight and David Fegen at UC Berkeley, David Badre at Brown University, Andrew Kayser at the Department of Veterans Affairs in Martinez, Calif., Edward Chang at UCSF, Nathan Crone at Johns Hopkins University and Joseph Parvizi at Stanford University.

Media Contact

Yasmin Anwar
yanwar@berkeley.edu
510-643-7944

 @UCBerkeleyNews

http://www.berkeley.edu 

Yasmin Anwar | EurekAlert!

Further reports about: activity brain regions disorders healthy human brain motor cortex neurons oscillations people with rhythms waves

More articles from Health and Medicine:

nachricht Why beta-blockers cause skin inflammation
07.11.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Cytoplasm of scrambled frog eggs organizes into cell-like structures, Stanford study finds
07.11.2019 | Stanford Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

Im Focus: An amazingly simple recipe for nanometer-sized corundum

Almost everyone uses nanometer-sized alumina these days - this mineral, among others, constitutes the skeleton of modern catalytic converters in cars. Until now, the practical production of nanocorundum with a sufficiently high porosity has not been possible. The situation has changed radically with the presentation of a new method of nanocorundum production, developed as part of a German-Polish cooperation of scientists from Mülheim an der Ruhr and Cracow.

High temperatures and pressures, processes lasting for even dozens of days. Current methods of producing nanometer-sized alumina, a material of significant...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Turbulence creates ice in clouds

08.11.2019 | Earth Sciences

Manganese nodules: project on environmental impact during deep sea mining

08.11.2019 | Earth Sciences

Laser versus weeds: LZH shows Farming 4.0 at the Agritechnica

08.11.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>