Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grouping muscles to make controlling limbs easier

22.04.2009
With more than 30 muscles in your arm, controlling movement -- whether it's grasping a glass or throwing a baseball -- is a complex task that potentially takes into account thousands of variables.

But researchers at Northwestern University have shown that it could be possible to control a limb by stimulating groups of muscles rather than individual muscles -- a finding that could make it easier to restore muscle movements in people who have become paralyzed.

The researchers used a model of the muscles in a frog's hind leg to perform a computational analysis that, when run as a simulation, shows that researchers can control the limb using muscle groups just about as well as if they controlled individual muscles. The findings were published last week by the Proceedings of the National Academy of Sciences.

"By controlling muscle groups instead of individual muscles, we're reducing the variables, but we're not losing efficiency," said Matthew Tresch, assistant professor of biomedical engineering at the McCormick School of Engineering and Applied Science and of physical medicine and rehabilitation at the Feinberg School of Medicine. Tresch and colleagues from the Rehabilitation Institute of Chicago conducted the research.

The idea that the body's nervous system controls a limb using muscle groups, or "synergies," has been a controversial hypothesis in the research community for the last decade. If this were the case, it would reduce the number of variables that the nervous system needs to control.

"We still don't know if that's how the central nervous system works, but what has been missing from the rhetoric is the question of whether this is a viable way to produce behavior," said Tresch. "That's what our experiment tried to do."

Using both analytical approaches and techniques from control theory, the researchers chose the muscle combinations that let the frog's hind leg do what it wants to do most effectively. The simulation showed that by choosing the most effective balance of muscle synergies, the researchers could control movement without degrading performance.

"Having all these muscle variables complicates control of behavior, but it also makes certain behavior easier," said Tresch. "The complexity might be there to make certain kinds of movements more efficient than others."

By having this framework, researchers might be able to predict how muscle activation changes when a person loses a muscle or becomes paralyzed.

"Whether or not the nervous system uses this, it does seem like an approach that can simplify control for a complicated mechanical system, like a limb," said Tresch. "For people with spinal cord injuries, you can put electrodes into their muscles and stimulate them. We can use this synergies approach to make controlling a limb simpler."

Next Tresch will perform similar research using a rat model, and he is currently working with other professors at Northwestern to bring the research to patients.

"The end goal is to restore movement in people who are paralyzed," he said.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>