Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going for an MRI scan with tattoos? First prospective study on risk assessment

31.01.2019

Tattoos are increasingly popular. Every eighth person in Germany has already felt the sting of getting a tattoo. A recent representative survey of the Federal Institute for Risk Assessment (BfR) revealed that nearly 90% of tattooed individuals considered them harmless to one’s health. Yet, if tattooed people are to be examined with magnetic resonance imaging (MRI), the question often arises of how risky the procedure is for them. The first prospective study with statistically verifiable numbers has now been presented by a research team led by Nikolaus Weiskopf in the prestigious New England Journal of Medicine.

According to Weiskopf, Director at the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig (MPI CBS), "…the most important questions for us were: Can we conduct our studies with tattooed subjects without hesitation? What restrictions may exist?


For the study the scientists systematically collected information about their participants' tattoos - how big they were, where they were located, and what colors were used.

©Albina_Glisic/Shutterstock.com/MPI CBS

At the Wellcome Centre for Human Neuroimaging, part of Queen Square Institute of Neurology at University College in London, where I started the study in 2011, there were increasing numbers of volunteers with tattoos. At the time, there simply was not enough data to determine the likelihood of tattoo-related side effects arising from MRI examinations."

His former colleague in London, Martina Callaghan, completed the study after Weiskopf left London to become director at the MPI CBS in Leipzig. "Based on our investigations, we can now state, on the basis of meaningful numbers, that if a tattooed individual is scanned under the conditions tested in the study, the risk of side effects is very small." the physicist explains.

Indeed, millions of people with tattoos are scanned every year in hospitals and research facilities without any side effects. Until now there has not been a systematic prospective study on how safe it is to be scanned in an MRI scanner with a tattoo. Reports of adverse reactions are usually based on individual cases and describe two different reactions. It is possible that the pigments in tattoos can interact with the static magnetic field of the scanner.

Why? The tattoo ink can contain pigments that are ferrous and therefore magnetic. The strong magnetic fields involved in the procedure can interact with these small particles, which in turn can lead to a pulling sensation on the tattooed skin. However, it is another potential interaction which may represent, from the experts' point of view, a far greater risk.

Many of the color pigments are also conductive. This is an issue because in MR imaging, high-frequency magnetic fields are used to generate the images by effectively labelling protons. "High-frequency fields usually have a frequency of a few hundred megahertz. That happens to correspond to the resonance lengths of conductive structures similarly sized as tattoos. In this case, the tattoo may absorb much of the energy of the high-frequency field, which would normally be spread out more widely. It can then happen that the tattoo heats up. In the worst case, this can lead to burns", says Nikolaus Weiskopf.

Together with his colleagues at University College in London, he examined 330 study participants before and after the MRI scan and tested a total of 932 tattoos. The team systematically collected information about their participants' tattoos - how big they were, where they were located, and what colors were used.

The country of origin was also recorded with most arising in Europe, but also from America, Asia, Africa and Australia. The majority of the ink used was black, but various colors were also registered.

"We found that the majority of the participants did not notice any side effects with tattoos", says Weiskopf. "There was one specific case where the study doctor found that side effects - a tingling sensation on the skin - were related to scanning. However, this unpleasant feeling disappeared within 24 hours without the affected person having required medical treatment."

In order to ensure the participants safety (from potential burns) not just anyone could be scanned for the study - exclusion criteria concerned the size and number of tattoos. For example, a single tattoo was not allowed to exceed twenty centimeters and no more than five percent of the body could be covered by tattoos.

The MRI scanners used in the study had a static magnetic field strength of three Tesla, as is common in many clinics today. By comparison, the magnetic field of a rather weak 0.5 Tesla MRI model is ten thousand times stronger than the Earth's magnetic field. These MRI scanners usually have a radiofrequency body coil, which stimulates the proton spins for imaging.

The high frequency field of a body coil extends not only over the head, which was scanned in this study, but also the upper body area of the participants and thus on frequently tattooed areas. According to Nikolaus Weiskopf, the results of the study not only provide information on safety guidelines for research, but can also be helpful for clinical environments.

The existing recommendations on how to scan people with tattoos are always based on weighing the risk against the actual benefit of diagnosing a disease. While it should be noted that the results are limited to specific configurations and scanner types, this study adds to the positive safety record of MRI.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Nikolaus Weiskopf
Managing Direktor MPI CBS
Phone: +49 341 9940-133
Fax: +49 341 9940-2448
E-Mail: weiskopf@cbs.mpg.de

Martina F. Callaghan
Wellcome Centre for Human Neuroimaging
UCL Institute of Neurology, London
Email: m.callaghan@ucl.ac.uk
Phone: +44-20-344-84383

Originalpublikation:

"Safety of Tattoos in Persons Undergoing MRI"
New England Journal of Medicine (NEJM)
DOI: 10.1056/NEJMc1811197

Bettina Hennebach | Max-Planck-Institut für Kognitions- und Neurowissenschaften
Further information:
http://www.cbs.mpg.de
https://www.cbs.mpg.de/1037609/20190130

More articles from Health and Medicine:

nachricht Novel anti-cancer nanomedicine for efficient chemotherapy
17.09.2019 | University of Helsinki

nachricht Researchers have identified areas of the retina that change in mild Alzheimer's disease
16.09.2019 | Universidad Complutense de Madrid

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>