Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishing for answers to autism puzzle

20.06.2012
Biologists take a new approach to deciphering the roles of genes associated with autism.

Fish cannot display symptoms of autism, schizophrenia or other human brain disorders. However, a team of MIT biologists has shown that zebrafish can be a useful tool for studying the genes that contribute to such disorders.

Led by developmental biologist Hazel Sive, the researchers set out to explore a group of about two dozen genes known to be either missing or duplicated in about 1 percent of autistic patients. Most of the genes’ functions were unknown, but the MIT study revealed that nearly all of them produced brain abnormalities when deleted in zebrafish embryos.

The findings should help researchers pinpoint genes for further study in mammals, says Sive, a professor of biology and associate dean of MIT’s School of Science. Autism is thought to arise from a variety of genetic defects; this research is part of a broad effort to identify culprit genes and develop treatments that target them.

“That’s really the goal — to go from an animal that shares molecular pathways, but doesn’t get autistic behaviors, into humans who have the same pathways and do show these behaviors,” says Sive, who is also a member of the Whitehead Institute for Biomedical Research.

Sive and her colleagues described their findings a recent paper in the online edition of the journal Disease Models and Mechanisms. Lead authors of the paper are Whitehead postdocs Alicia Blaker-Lee, Sunny Gupta and Jasmine McCammon.

A logical starting point

Sive recalls that some of her colleagues chuckled when she first proposed studying human brain disorders in fish, but it is actually a logical starting point, she says. Brain disorders are difficult to study because most of the symptoms are behavioral, and the biological mechanisms behind those behaviors are not well understood, she says.

“We thought that since we really know so little, that a good place to start would be with the genes that confer risk in humans to various mental health disorders, and to study these various genes in a system where they can readily be studied,” she says.

Those genes tend to be the same across species — conserved throughout evolution, from fish to mice to humans — though they may control somewhat different outcomes in each species.

In the Disease Models and Mechanisms paper, Sive and her colleagues focused on a genetic region known as 16p11.2, first identified by Mark Daly, a former Whitehead researcher who identified a type of genetic defect known as a copy number variant. A typical genome includes two copies of every gene, one from each parent; copy number variants occur when one of those copies is deleted or duplicated, and can be associated with pathology.

The “core” 16p11.2 region includes 25 genes. Both deletions and duplications in this region have been associated with autism, but it was unclear which of the genes might actually produce symptoms of the disease. “At the time, there was an inkling about some of them, but very few,” Sive says.

Sive and her postdocs began by identifying zebrafish genes analogous to the human genes found in this region. (In zebrafish, these genes are not clustered in a single genetic chunk, but are scattered across many chromosomes.) The researchers studied one gene at a time, silencing each with short strands of nucleic acids that target a particular gene and prevent its protein from being produced.

For 21 of the genes, silencing led to abnormal development. Most produced brain deficits, including improper development of the brain or eyes, thinning of the brain, or inflation of the brain ventricles, cavities that contain cerebrospinal fluid. The researchers also found abnormalities in the wiring of axons, the long neural projections that carry messages to other neurons, and in simple behaviors of the fish. The results show that the 16p11.2 genes are very important during brain development, helping to explain the connection between this region and brain disorders.

Furthermore, the researchers were able to restore normal development by treating the fish with the human equivalents of the genes that had been repressed. “That allows you to deduce that what you’re learning in fish corresponds to what that gene is doing in humans. The human gene and the fish gene are very similar,” Sive says.

Genes with impact

To figure out which of these genes might have a strong effect in autism or other disorders, the researchers set out to identify genes that produce abnormal development when their activity is reduced by 50 percent, which would happen in someone who is missing one copy of the gene. (This correlation is not seen for most genes, because there are many other checks and balances that regulate how much of a particular protein is made.)

The researchers identified two such genes in the 16p11.2 region. One, called kif22, codes for a protein involved in the separation of chromosomes during cell division; another, aldolase a, is involved in glycolysis — the process of breaking down sugar to generate energy for the cell.

Though zebrafish have long been studied as a model of brain development, the new MIT research adds a new dimension to their usefulness, says Su Guo, an associate professor of pharmaceutical sciences at the University of California at San Francisco.

“This is really nice work that shows the importance of zebrafish in revealing disease mechanisms related to human mental disorders — in this case, autism,” says Guo, who was not involved in this study.

In work that has just begun, Sive’s lab is working with Stanford University researchers to explore in mice predictions made from the zebrafish study. They are also doing molecular studies in zebrafish of the pathways affected by these genes, to get a better idea of how defects in these might bring about neurological disorders.

Sive is a member of the Simons Center for the Social Brain at MIT; this research was funded by the Simons Foundation Autism Research Initiative.

Written by: Anne Trafton, MIT News Office

Caroline McCall | EurekAlert!
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

nachricht Scientists find new approach that shows promise for treating cystic fibrosis
14.03.2019 | NIH/National Heart, Lung and Blood Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>