Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Firefly Technology Lights Up More Precise Kidney Sparing Surgery

06.06.2012
Innovative Fluorescence Imaging Helps Surgeons Remove Just the Tumor, Rather Than the Whole Kidney

A surgical technology called Firefly is shedding new light on kidney cancers and helping doctors at MedStar Georgetown University Hospital remove tumors more safely and more efficiently while sparing the rest of the healthy kidney.

“The addition of Firefly fluorescence during robotic surgery improves our ability to remove kidney tumors when before we might have had to remove the whole kidney,” said Keith Kowalczyk, MD, urologist and robotic surgeon.

“Firefly, which essentially utilizes a dye that lights up in “firefly green” when using a specialized fluoroscopic camera, can show us the difference between cancerous and healthy tissue and helps us see the blood supply to the tumor. It lights up parts of the kidney and its blood supply we couldn’t see this well before.”

This new innovation uses the minimally-invasive precision of the da Vinci Surgical System, and adds the second component of Firefly fluorescence imaging. MedStar Georgetown is one of the first hospitals in the DC region to use this new technology.

When Eugene Carter of Washington, D.C. was diagnosed with kidney cancer, the decision to have robotic surgery by Dr. Kowalczyk while utilizing fluorescence imaging seemed the obvious choice.

“I’m 70, and with advanced age the hazards of surgery can increase, so I wanted the least invasive surgery possible,” explained Mr. Carter. “The robotics provide more steadiness and precision, and I wanted my surgeon to be as steady and as precise as possible. It seems to me this is just a much wiser system.”

How does it work? The Firefly technology uses near-infrared imaging to detect an injected tracer dye of indocyanine green (ICG) in the blood.

During surgery, urologists use the Firefly system at three different stages of the procedure. The first injection of the dye into the IV by the anesthesiologist gives a detailed picture of the blood supply to the kidney.

“Up to 25-percent of patients might have extra renal arteries that are not always obvious on a CT scan or MRI, so the Firefly can help us see these arteries. This helps us ensure that all of the blood supply to the kidney is accounted for and controlled prior to the removal of the tumor, and can therefore decrease blood loss,” explained Dr. Kowalczyk.

The second injection of dye helps the surgeon differentiate between the cancerous tissue and the normal kidney tissue, which can allow for better tumor removal and potentially a lower risk of leaving any cancer behind. Finally, after the tumor has been removed and the kidney has been repaired, the dye can again be injected again to ensure that the blood supply to the kidney has been properly restored.

Besides the known benefits of robotic minimally-invasive surgery—including smaller incisions, less blood loss, less postoperative pain, shorter hospital stays, and earlier returns to work—the addition of the Firefly system can improve patient outcomes even further.

“Additionally, the ability to better distinguish between tumor tissue and normal kidney tissue may lead to a lower risk of leaving any tumor behind, and therefore better long-term cancer control,” said Dr. Kowalczyk.

According to the American Cancer Society, kidney cancer is among the 10 most common cancers among both men and women. The ACS estimates that about 64,770 new cases of kidney cancer will occur in 2012, and about 13,570 people will die from the disease.

“I’m so glad I was able to keep my kidney,” said Mr. Carter. “Without this new system, my kidney might not have been able to be saved.”

Marianne Worley | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Health and Medicine:

nachricht New 3D cultured cells mimic the progress of NASH
02.04.2020 | Tokyo University of Agriculture and Technology

nachricht Geneticists are bringing personal medicine closer to recently admixed individuals
02.04.2020 | Estonian Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>