Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Firefly Technology Lights Up More Precise Kidney Sparing Surgery

06.06.2012
Innovative Fluorescence Imaging Helps Surgeons Remove Just the Tumor, Rather Than the Whole Kidney

A surgical technology called Firefly is shedding new light on kidney cancers and helping doctors at MedStar Georgetown University Hospital remove tumors more safely and more efficiently while sparing the rest of the healthy kidney.

“The addition of Firefly fluorescence during robotic surgery improves our ability to remove kidney tumors when before we might have had to remove the whole kidney,” said Keith Kowalczyk, MD, urologist and robotic surgeon.

“Firefly, which essentially utilizes a dye that lights up in “firefly green” when using a specialized fluoroscopic camera, can show us the difference between cancerous and healthy tissue and helps us see the blood supply to the tumor. It lights up parts of the kidney and its blood supply we couldn’t see this well before.”

This new innovation uses the minimally-invasive precision of the da Vinci Surgical System, and adds the second component of Firefly fluorescence imaging. MedStar Georgetown is one of the first hospitals in the DC region to use this new technology.

When Eugene Carter of Washington, D.C. was diagnosed with kidney cancer, the decision to have robotic surgery by Dr. Kowalczyk while utilizing fluorescence imaging seemed the obvious choice.

“I’m 70, and with advanced age the hazards of surgery can increase, so I wanted the least invasive surgery possible,” explained Mr. Carter. “The robotics provide more steadiness and precision, and I wanted my surgeon to be as steady and as precise as possible. It seems to me this is just a much wiser system.”

How does it work? The Firefly technology uses near-infrared imaging to detect an injected tracer dye of indocyanine green (ICG) in the blood.

During surgery, urologists use the Firefly system at three different stages of the procedure. The first injection of the dye into the IV by the anesthesiologist gives a detailed picture of the blood supply to the kidney.

“Up to 25-percent of patients might have extra renal arteries that are not always obvious on a CT scan or MRI, so the Firefly can help us see these arteries. This helps us ensure that all of the blood supply to the kidney is accounted for and controlled prior to the removal of the tumor, and can therefore decrease blood loss,” explained Dr. Kowalczyk.

The second injection of dye helps the surgeon differentiate between the cancerous tissue and the normal kidney tissue, which can allow for better tumor removal and potentially a lower risk of leaving any cancer behind. Finally, after the tumor has been removed and the kidney has been repaired, the dye can again be injected again to ensure that the blood supply to the kidney has been properly restored.

Besides the known benefits of robotic minimally-invasive surgery—including smaller incisions, less blood loss, less postoperative pain, shorter hospital stays, and earlier returns to work—the addition of the Firefly system can improve patient outcomes even further.

“Additionally, the ability to better distinguish between tumor tissue and normal kidney tissue may lead to a lower risk of leaving any tumor behind, and therefore better long-term cancer control,” said Dr. Kowalczyk.

According to the American Cancer Society, kidney cancer is among the 10 most common cancers among both men and women. The ACS estimates that about 64,770 new cases of kidney cancer will occur in 2012, and about 13,570 people will die from the disease.

“I’m so glad I was able to keep my kidney,” said Mr. Carter. “Without this new system, my kidney might not have been able to be saved.”

Marianne Worley | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>