Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explosive breakthrough in research on molecular recognition published in Nature

13.02.2013
Ever wonder how sometimes people still get through security with explosives on their person? Research done in the University of Alberta’s Department of Chemical and Materials Engineering has revealed a new way to better detect these molecules associated with explosive mixtures.
A team of researchers including post-doctoral fellows Seonghwan Kim, Dongkyu Lee and Xuchen Liu, with research associate Charles Van Neste, visiting professor, Sangmin Jeon from the Pohang University of Science and Technology (South Korea), and Department of Chemical and Materials Engineering professor Thomas Thundat, has found a method of using receptor-free nanomechanical infrared spectroscopy to increase recognition of chemical molecules in explosive mixtures.

Detecting trace amounts of explosives with mixed molecules presents a formidable challenge for sensors with chemical coatings. The nanomechanical infrared spectroscopy used by the Univesity of Alberta research team provides higher selectivity in molecular detection by measuring the photothermal effect of the absorbed molecules.

Thundat, who holds the Canadian Excellence Research Chair in Oil Sands Molecular Engineering, says the spectroscopy looks at the physical nature of the molecule and “even if there are mixed molecules, we can detect specific molecules using this method.”

Seonghwan (Sam) Kim explained that conventional sensors based on coatings generally cannot detect specific molecules in complex mixtures if the concentration of interfering molecules is five times greater than the target molecules. The detection sensitivity and selectivity are drastically increased using the high-power infrared laser because the photothermal signal comes from the absorption of infrared photons and nonradiative decay processes. Using this method, a few trillionths of a gram of explosive molecules can now be detected in a complex mixture even if there is a higher concentration of other interfering molecules.

The research team’s findings are published in Scientific Reports by Nature Publishing Group on January 23, 2013.

The research team’s current work looks at detecting biomolecules and hydrocarbons in the oil industry and nerve gas stimulants (DMMP), which can be found in household radiators, gasoline, and fabric softeners, for example. The team also hopes to develop a hand-held device for chemical detection that could be utilized in fields such as security, health care and environmental protection.

The full article as published in Nature Scientific Reports can be found online here:

http://www.nature.com/srep/2013/130123/srep01111/full/srep01111.html

Richard Cairney | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Health and Medicine:

nachricht The cytoskeleton of neurons has been found to be involved in Alzheimer's disease
18.01.2019 | University of the Basque Country

nachricht Bioinspired nanoscale drug delivery method developed by WSU, PNNL researchers
10.01.2019 | Washington State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>