Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Old drug reveals new tricks

01.03.2012
Study of patients infected with both HIV and hepatitis shows how the drug interferon works to suppress virus

A drug once taken by people with HIV/AIDS but long ago shelved after newer, modern antiretroviral therapies became available has now shed light on how the human body uses its natural immunity to fight the virus—work that could help uncover new targets for drugs.

In an article published online this month by the journal PNAS, a group of U.S. and Swiss researchers led by scientists at the University of California, San Francisco (UCSF) presented the first clinical assessment of how this drug fights infections in people. The drug, called interferon, is a biotechnology product based on a protein the body naturally produces to fight infections.

While purified interferon was given to people with HIV/AIDS in the early days of the epidemic because it alleviated many of the symptoms of the disease, its mode of action was always something of a black box.

"Nobody knew how it worked," said Satish K. Pillai, PhD, lead investigator and assistant professor of Medicine at UCSF and the San Francisco VA Medical Center.

Experiments in the laboratory in recent years have shown how interferon may work to suppress HIV in vitro, but there was no clinical evidence until now showing how the drug attacks HIV in treated patients. The problem is that so few people actually take interferon for HIV any more. However, interferon is still used in combination with other drugs to treat hepatitis C, which gave the team the possibility to assess its effect on HIV.

Interferon is commonly used to treat people with hepatitis C virus, and Pillai and his colleagues were able to identify 20 people enrolled in the Swiss HIV Cohort Study, which began in 1988, who have both HIV and hepatitis C. All 20 were taking interferon to treat their hepatitis C, but none were receiving antiretroviral drugs to treat HIV. This allowed researchers to examine how interferon works to suppress the virus.

HOW INTERFERON WORKS

The new work sheds further light on somewhat mysterious components of the immune system known as restriction factors, which are chemicals the human body produces to keep viruses like HIV in check and prevent them from infecting other cells.

These are just two fronts in the overall battle between HIV and the immune system—a battle in which the immune system seeks to destroy the virus while the virus constantly counters by undermining the immune system.

Unlike other parts of the immune system, where whole cells gobble up invading pathogens or attack other cells, the action of these restriction factors is more subtle and localized within the infected cell itself—one of the reasons scientists didn't appreciate what they do until just a few years ago.

One of them, called APOBEC3, fights viruses by stealthily jumping onto new virus particles as they form. Therein, the APOBEC3 protein fouls up HIV's genetic material by mutating it. When the virus tries to infect another cell, it no longer has the potency to replicate.

Another factor, called tetherin, takes an even more direct approach. It attaches to virus particles as they emerge from infected cells in the body and literally tethers them in place, preventing them from moving elsewhere in the body where they could infect new cells.

HIV has its own countermeasures to thwart these defenses. It produces a protein known as Vpu that neutralizes tetherin. Another HIV protein, called Vif, subverts APOBEC.

In the new study, Pillai and his colleagues showed that interferon combats HIV by mediating the action of both of these restriction factors. They collected samples from the 20 patients and measured the levels of APOBEC3 and tetherin before, during and after they took the drug interferon. The levels increased in response to interferon when the drug was in the bloodstream, and patients with the highest restriction factor levels showed the most precipitous drop in HIV viral load during interferon treatment.

While this insight does not immediately suggest new drugs or new ways of treating people with HIV, Pillai said scientists armed with this knowledge may one day figure out how to enhance this defense mechanism and specifically enhance the expression of restriction factors like tetherin and APOBEC3 in HIV-1–infected individuals.

If these factors can be induced to higher levels, their attack on the virus may become more potent—perhaps even overriding HIV's countermeasures and helping flush the virus from infected cells.

The article, "Role of retroviral restriction factors in the interferon-á–mediated suppression of HIV-1 in vivo," was written by Satish K. Pillai, Mohamed Abdel-Mohsen, John Guatelli, Mark Skasko, Alexander Monto, Katsuya Fujimoto, Steven Yukl, Warner C. Greene, Helen Kovari, Andri Rauch, Jacques Fellay, Manuel Battegay, Bernard Hirschel, Andrea Witteck, Enos Bernasconi, Bruno Ledergerber, Huldrych F. Günthard, Joseph K. Wong, and the Swiss HIV Cohort Study.

In addition to UCSF, the authors of this study are affiliated with the San Francisco VA Medical Center, the Veterans Affairs San Diego Healthcare System at the University of California at San Diego, the Gladstone Institute of Virology and Immunology, and the Swiss university hospitals of Zurich, Berne, Lausanne, Basel, Geneva, St. Gallen and Lugano.

This work was funded by the National Institutes of Health and through the American Recovery and Reinvestment Act (ARRA). Additional support was provided by Swiss HIV Cohort Study Project 594; the Veterans Affairs Merit Review; and several Swiss National Science Foundation Grants. The Swiss HIV Cohort Study is supported by the Swiss National Science Foundation and the Swiss HIV Cohort Study Research Foundation.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>