Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dramatically effective against strokes

20.09.2012
Every two minutes someone in Germany suffers a stroke, yet there are hardly any effective treatments. Scientists from the University of Würzburg are now pursuing a new approach: inhibiting a blood protein seems to mitigate the negative consequences of strokes quite dramatically.
Strokes usually occur as follows: blood vessels that supply the brain with oxygen and other vital things suddenly become blocked by blood clots. This causes damage to the brain. Even if the clots are eliminated quickly, many people affected subsequently suffer neurological dysfunctions, such as major paralysis or speech disorders.

There are other factors that are also responsible for damage following a stroke, most notably inflammatory processes in the brain and the formation of a so-called cerebral edema, where fluid from the damaged blood vessels leaks into the brain tissue. Pressure builds as a result, so areas of the brain that were initially healthy can become affected as well.

“This multitude of harmful processes after a stroke is one reason why new treatments have often failed in the past,” says Professor Christoph Kleinschnitz, head of Stroke Medicine at the University of Würzburg’s Department of Neurology. Ideally, new medications should therefore target several key sites in order to achieve maximum effect.

Blood protein inhibition shows promise

Medicine could be closing in on this goal with inhibition of the blood protein kininogen since this damages nerve cells in three ways following a stroke: firstly, it promotes the formation of further blood clots in the brain; it also exacerbates both inflammation and cerebral edema. This is what Kleinschnitz’s team of Würzburg biophysicists and biomedical scientists is now reporting in the online issue of “Blood”, the renowned journal of the American Society of Hematology.

The scientists worked with mice that were lacking the gene for kininogen. The brain damage suffered by these animals following a stroke was reduced by more than two thirds. They also experienced far fewer neurological dysfunctions. “This protective effect lasted for many days and was observed in both young and old mice, in males as well as females,” says Kleinschnitz. This finding is hugely important, he explains, because gender-specific differences have often been neglected in stroke research.

Next step: use of antibodies

Next, the Würzburg researchers wish to inhibit the blood protein kininogen not just genetically, but also pharmacologically – with antibodies. This would be an important step on the road to assessing whether the new method might also be trialed in stroke patients at a later date.
The work in Würzburg Collaborative Research Center (SFB) 688 was funded by the German Research Foundation (DFG) as well as the Wilhelm Sander Foundation.

“Kininogen deficiency protects from ischemic neurodegeneration in mice by reducing thrombosis, blood-brain-barrier damage and inflammation”, Friederike Langhauser, Eva Göb, Peter Kraft, Christian Geis, Joachim Schmitt, Marc Brede, Kerstin Göbel, Xavier Helluy, Mirko Pham, Martin Bendszus, Peter Jakob, Guido Stoll, Sven G. Meuth, Bernhard Nieswandt, Keith R. McKrae, and Christoph Kleinschnitz. Blood, published online on August 30, 2012, DOI 10.1182/blood-2012-06-440057

Contact

Prof. Dr. Christoph Kleinschnitz, Department of Neurology at the University of Würzburg, T +49 (0)931 201-23756, christoph.kleinschnitz@uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

nachricht Breakthrough in understanding how deadly pneumococcus avoids immune defenses
13.11.2018 | University of Liverpool

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>