Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new form of dystrophin protein could lead to therapy for some DMD patients

11.08.2014

Scientists have discovered a new form of dystrophin, a protein critical to normal muscle function, and identified the genetic mechanism responsible for its production.

Studies of the new protein isoform, published online Aug. 10 in Nature Medicine and led by a team in The Research Institute at Nationwide Children's Hospital, suggest it may offer a novel therapeutic approach for some patients with Duchenne muscular dystrophy, a debilitating neuromuscular condition that usually leaves patients unable to walk on their own by age 12.

Duchenne muscular dystrophy, or DMD, is caused by mutations in the gene that encodes dystrophin, which plays a role in stabilizing the membrane of muscle fibers. Without sufficient quantities of the protein, muscle fibers are particularly susceptible to injury during contraction. Over time, the muscle degenerates and muscle fibers are slowly replaced by fat and scar tissue. Many different types of mutations can lead to DMD, some of which block dystrophin production altogether and others that result in a protein that doesn't function normally.

In 2009, a team led by Kevin Flanigan, MD, a principal investigator in the Center for Gene Therapy at Nationwide Children's, published two studies describing patients whose genetic mutation was located in a exon 1, at the beginning of the gene. This mutation should have made natural production of functioning dystrophin impossible, resulting in severe disease.

... more about:
»DMD »IRES »RNA »exons »fibers »mutations »symptoms

However, the patients had only minimal symptoms and relatives carrying the same mutations were identified who were walking well into their 70s. Muscle biopsies revealed that, despite the genetic mutations, the patients were producing significant amounts of a slight smaller yet functioning dystrophin. In the 2009 studies, Dr. Flanigan's group demonstrated that translation of this dystrophin did not begin in exon 1, as usual, but instead began later in the gene in exon 6, although the mechanism controlling this alternate translation remained unknown.

In their latest study, Dr. Flanigan's team has found the explanation. In order to utilize the protein-building instructions they carry, exons are first transcribed into a final genetic blueprint called messenger RNA. Under normal conditions, the messenger RNA is marked at its very beginning by a special molecular cap that is critical for recruiting ribosomes, the cellular structures responsible for translation of the gene into a protein. Most cases of DMD are due to mutations that interrupt the translational activity of ribosomes.

In explaining the mild symptoms seen in many patients with mutations in the first exons of the dystrophin gene — including the group of patients they first described in 2009 — the researchers have now demonstrated that dystrophin can be produced by an alternate cellular mechanism in which capping of the messenger RNA is not required. This newly described mechanism makes use of an internal ribosome entry site, or IRES, found within exon 5 in the dystrophin gene, allowing initiation of protein translation within exon 6 that can then proceed in the normal fashion along the rest of the gene.

"This alternate translational control element is encoded within the dystrophin gene itself, in a region of the gene that evolution has highly conserved," Dr. Flanigan said. "This suggests that the dystrophin protein that results from its activation plays an important but as of yet unknown role in cell function — perhaps when muscle is under cell stress, one of the conditions under which IRES elements are typically activated."

Although clinical trials are currently investigating drugs to treat the more common gene mutations found in the middle of the dystrophin gene, no current therapies are specifically directed toward the approximately 6 percent of patients with mutations affecting the first four exons. Although many of these patients have relatively mild disease, many others have much more severe symptoms. If scientists could figure out a way to activate IRES in those patients, they may be able to produce enough dystrophin to lessen muscle degeneration, Dr. Flanigan said.

To study that possibility, his team is developing different approaches to trigger the IRES, using a new DMD mouse model they have developed. One of these approaches, called exon skipping, is based on the removal of an exon early in the gene in order to mimic the IRES-activating mutations found in minimally affected patients.

"Rather than intending this as a personalized therapy, we are developing this as a tool that could be used for all patients harboring a mutation within the first few exons of dystrophin," said Nicolas Wein, PhD, lead author of the new study and a postdoctoral scientist in the Center for Gene Therapy at Nationwide Children's. "Using this approach, we have already shown that we are able to restore running ability in our new mouse model of DMD. We hope to translate this into clinical trials in DMD patients in the future."

###

The research was supported in part by the National Institutes of Health and the nonprofit organization CureDuchenne.

Gina Bericchia | Eurek Alert!
Further information:
http://www.nationwidechildrens.org

Further reports about: DMD IRES RNA exons fibers mutations symptoms

More articles from Health and Medicine:

nachricht Researchers develop high-performance cancer vaccine using novel microcapsules
25.05.2020 | Chinese Academy of Sciences Headquarters

nachricht Blood flow recovers faster than brain in micro strokes
25.05.2020 | Rice University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>