Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery may lead to targeted heart disease treatments

09.05.2012
University of Guelph researchers have found the location and effect of abnormal heart proteins that can cause cardiac failure, a discovery that points to potential new ways to treat the most costly health problem in the world.

The study appears today in PLoS ONE, a peer-reviewed international journal published by the Public Library of Science. It is available online: http://dx.plos.org/10.1371/journal.pone.0036821

"In order to cure heart disease, you have to understand its fundamental properties," said study author John Dawson, a molecular and cellular biology professor.

"So we looked at variants of naturally occurring proteins that are found in people with heart disease."

The research team included graduate students Maureen Mundia, Ryan Demers, Melissa Chow and Alexandru Perieteanu.

Heart disease and stroke is the leading cause of death in Canada, killing tens of thousands each year. Treating cardiovascular disease costs more than $20 billion a year in physician and hospital costs, lost wages and reduced productivity.

The study examined gene abnormalities for the actin protein and its role in heart failure.

As the most abundant protein in the body, actin helps in vital processes including muscle movement.

Abnormal actin genes are linked to heart diseases such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). HCM causes excessive thickening of the heart muscle and can lead to sudden cardiac death. Under DCM, the heart weakens and enlarges, and cannot pump blood efficiently.

Scientists had already linked HCM and DCM to 14 actin gene abnormalities. "But this is the first time that many of these variants have been studied at the molecular level," Dawson said.

Understanding the molecular deficiencies of actin variants is a starting point for figuring out the underlying mechanisms of heart diseases, he said.

The researchers inserted human genes into insect cells to make heart muscle proteins for study. Dawson's lab is one of the few in the world able to do this work.

They then mapped where on the abnormalities occurred and their effects. Three were in spots that resulted in problems with heart contractions; three others were in locations that affected stability and efficiency.

Dawson hopes their work will help in developing more targeted treatments.

"Heart disease has many different forms and variants. If we can design specific therapies that address the precise mechanisms of the things going on — treat the root cause rather than the whole system — then we can improve the quality of life for people."

Dawson belongs to a growing cardiovascular research group at the University of Guelph, one of few such groups worldwide studying cardiovascular disease from single molecules to animal models.

"It makes Guelph a unique place to do this research," he said.

John Dawson | EurekAlert!
Further information:
http://www.uoguelph.ca

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>