Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Differences in dopamine may determine how hard people work

02.05.2012
Human study suggests biological basis for individual differences in behavior

Whether someone is a "go-getter" or a "slacker" may depend on individual differences in the brain chemical dopamine, according to new research in the May 2 issue of The Journal of Neuroscience. The findings suggest that dopamine affects cost-benefit analyses.

The study found that people who chose to put in more effort — even in the face of long odds — showed greater dopamine response in the striatum and ventromedial prefrontal cortex, areas of the brain important in reward and motivation. In contrast, those who were least likely to expend effort showed increased dopamine response in the insula, a brain region involved in perception, social behavior, and self-awareness.

Researchers led by Michael Treadway, a graduate student working with David Zald, PhD, at Vanderbilt University, asked participants to rapidly press a button in order to earn varying amounts of money. Participants got to decide how hard they were willing to work depending on the odds of a payout and the amount of money they could win. Some accepted harder challenges for more money even against long odds, whereas less motivated subjects would forgo an attempt if it cost them too much effort.

In a separate session, the participants underwent a type of brain imaging called positron emission tomography (PET) that measured dopamine system activity in different parts of the brain. The researchers then examined whether there was a relationship between each individual's dopamine responsiveness and their scores on the motivational test described earlier.

Previous rodent research also showed that dopamine activity in motivational centers is important for long-shot decisions. However, in the current study, the researchers were surprised to find that those with increased dopamine activity in the insula were the least likely to expend effort on the task. "These results show for the first time that increased dopamine in the insula is associated with decreased motivation — suggesting that the behavioral effects of dopaminergic drugs may vary depending on where they act in the brain," said lead study author Treadway.

"Previous research has indicated that dopamine influences the motivation to seek out rewards. Now, this elegant new study provides the clearest evidence to date that individual differences in dopamine-related motivation might be a trait," said Marco Leyton, PhD, an expert on dopamine at McGill University, who was not involved in the study. "A striking implication highlighted by the authors is that abnormal dopamine transmission could affect a wide range of decision-making processes and susceptibility to depression."

This research was supported by the National Institute on Drug Abuse and the National Institute on Mental Health.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 42,000 basic scientists and clinicians who study the brain and nervous system. More information on decision-making can be found in the Society's Brain Briefings.

Kat Snodgrass | EurekAlert!
Further information:
http://www.sfn.org

Further reports about: Neuroscience decision-making process differences

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>