Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting cancer with lasers has limited use say MU researchers

31.07.2012
One person dies every hour from melanoma skin cancer in the United States, according to the American Cancer Society.

A technique, known as photoacoustics, can find some forms of melanoma even if only a few cancerous cells exist, but a recent study by MU researchers found that the technique was limited in its ability to identify other types of cancer.

Attaching markers, called enhancers, to cancer cells could improve the ability of photoacoustics to find other types of cancer and could save lives thanks to faster diagnosis, but the technique is in its early stages.

"Eventually, a photoacoustic scan could become a routine part of a medical exam," said Luis Polo-Parada, assistant professor of pharmacology & physiology and resident investigator at the Dalton Cardiovascular Research Center at the University of Missouri. "The technique doesn't use X-rays, like current methods of looking for cancer. It could also allow for much earlier detection of cancer. Now, a cancerous growth is undetectable until it reaches approximately one cubic centimeter in size. Photoacoustics could potentially find cancerous growths of only a few cells. Unfortunately, our research shows that, besides some cases of melanoma, the diagnostic use of photoacoustics still has major limitations. To overcome this problem, the use of photoacoustic enhancers like gold, carbon nanotubes or dyed nanoparticles, is needed."

Photoacoustics uses pulses of laser light to heat cells for a fraction of a second. When the cells become hot they emit a tiny sound. Extremely sensitive microphones can hear those sounds. The strength of the sound depends on how much laser light is absorbed. Since darker objects absorb more light they also emit more sound and can be found using photoacoustics.

"Some Melanoma can be found by photoacoustics because the cells contain large quantities of melanin, a dark pigment," Polo-Parada said. "Other cancers don't have that much pigmentation; hence, they don't stand out as much in photoacoustic scans. This is where enhancers may be able to help by labeling cancer cells and making them stand-out in a scan."

Polo-Parada in collaboration with Gerardo Gutierrez-Juarez, researcher from the University of Guanajuato, Mexico, found that out of seven types of cancer cells, only one type of melanoma was dark enough to produce a sound strong enough to be distinguishable from the rest.

The photoacoustic technique holds promise in the fight against cancer, said Polo-Parada, but it is too soon to say exactly when the public will benefit. Eventually, other diseases that cause changes in the coloration of cellular tissue, such as malaria, could be found by photoacoustics.

Luis Polo-Parada is an assistant professor in medical pharmacology & physiology and resident investigator at MU's Dalton Cardiovascular Research Center. The study, "An experimental and theoretical approach to the study of the photoacoustic signal produced by cancer cells," was published in the journal AIP Advances.

Timothy Wall | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>