Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer that reacts to thought a lifeline for brain injured

06.11.2008
People who have suffered traumatic brain injuries and who are unable to speak or move are being given the first chance to communicate using just the power of thought – and a laptop loaded with sophisticated algorithms.

The ground-breaking system has been devised by a computer researcher at the University of Portsmouth. Dr Paul Gnanayutham has devoted his life to giving people locked into silence after major brain injury the power to communicate but though his system works it will remain a lifeline for only a lucky few unless he wins funding.

The system he has devised uses patients’ brain waves and eye and muscular movements (together called bio-potentials) to move a cursor on a computer. The targets a person can point the cursor at on the prototype device could include ‘yes’, ‘no’, ‘thank you’, a switch to turn on an electrical appliance such as a television, and a link to an internet page of the patient’s choice, though the targets can be changed to anything a person prefers to say, or watch, or do.

This simple but life-changing breakthrough is not the first time scientists have found a way of using a person’s brain waves to navigate a cursor but Dr Gnanayutham’s is one of the first to be used on real people with serious brain injuries, rather than confined to a laboratory and tested on the able-bodied. All that is now needed for it to reach more people is funding to turn it into a product that can bought and used without expert help.

He said: “This technology has been around but very few people have used it for anything worthwhile, I worked with traumatic brain injured participants who were paraplegics, non-verbal and tube fed to give them a voice and the ability to say ‘yes’ or ‘no’ on a computer screen by using their bio-potentials.

“Learning how to navigate using their facial muscles or brainwaves isn’t easy and can take months. I worked for eight months with one young man who hadn’t communicated after his brain stem was broken in an accident. His mother knew he was ‘there’ and wasn’t giving up on her son but there had been no sign, no movement, nothing until he started using the brain wave system.

“It turned out he was very angry – he didn’t want his father to visit but had been unable to say so; his fiancée visited him but became increasingly distant as she went on with her life; only his mother and one nurse felt he was trying to communicate with them. It is the patience of very few people – those who really love or care for a person like this – who make the difference. If it hadn’t been for the man’s mother and one nurse who were sure he was trying to communicate he would have been ignored.

“Hospital staff look after these people – they feed them, wash them, shave them and so on but they do not have a voice. They have no way of saying ‘actually don’t turn off the lights please because I want to stay awake for another hour’, or ‘no, I don’t want visitors today’.”

But the breakthrough has other problems, he said, because many healthcare staff and even families of brain injured victims don’t want the patient to be given a voice. It is easier to care for them and keep them fed and clean if they don’t have the power to express a preference, to complain or ask for things to be done differently.

The system is non-invasive and works by attaching probes on an alice band worn around the head picking up brain waves (Electroencephalography or EEG), muscles (Electromyography or EEG) and eye movements (Electrooculorgraphy or EOG) signals at the forehead. These signals are then fed into an amplifier which can cut out external noise and listen only to the bio-potentials of the person wearing the electrodes and then to the serial port, so the computer just sees the brain-body interface as the cursor’s control.

It cannot be used with patients who are heavily sedated but if a person can move their eyes left and right they can navigate a cursor on a computer left and right; if they can raise their eyebrows they can navigate a cursor to go up and down; and lastly, if they are taught to imagine their brainwaves can be ‘read’ by the computer they can learn to navigate the cursor through the power of their thought.

Dr Gnanayutham has seen people who haven’t communicated with anyone for months or even years finally gain the power to ‘speak’.

He said: “These people have thoughts and preferences and are the same as us in their heads and thoughts but they can’t communicate. They can’t tell anyone what they are thinking and are forced to watch the world but be locked away from it as well. Everything is working in their minds but they can’t get it out. It is very frustrating for them and for those who love them and care for them.

“I have made it practical so it can be used by anyone. It is not for a laboratory experiment; it works for real people with locked in syndrome and gives them a voice.”

Though the options for communicating are limited to a few simple words it is the first time such people have had any such options at all and their loved ones are able to be more outspoken in their gratitude.

“I have been thanked by parents and the husbands or wives of some people I have helped to whom a simple ‘yes’ or ‘no’ is the first conversation they have had with their loved one in years.

The research Dr Gnanayutham has carried out involves so many complicated permissions being obtained that much of his work was done abroad. In the UK if a patient is aged under 18 the parents can give permission for the system to be tried on their child but if they are over 18 it is almost impossible to get permission to try the system.

Dr Gnanayutham has just one body-brain interface machine and he lends it to people he has taught to use it for as long as he can before another patient’s needs are greater. His dream is for the system to be developed so anyone could buy it off the shelf with an instruction manual. He said: “Many people are studying this in labs but nobody else is taking it to the people who really need it, they aren’t going out into the field. I want people to be able to use it without doctors and without me. I want to give them their voice back. Only then will it be a real success.”

Kate Daniell | alfa
Further information:
http://www.port.ac.uk

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Physicists found a correlation between the structure and magnetic properties of ceramics

18.12.2018 | Physics and Astronomy

Unique insights into an exotic matter state

18.12.2018 | Physics and Astronomy

Physicists studied the influence of magnetic field on thin film structures

18.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>