Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold sore virus may contribute to cognitive and brain abnormalities in schizophrenia

31.05.2010
Exposure to the common virus that causes cold sores may be partially responsible for shrinking regions of the brain and the loss of concentration skills, memory, coordinated movement and dexterity widely seen in patients with schizophrenia, according to research led by Johns Hopkins scientists.

"We're finding that some portion of cognitive impairment usually blamed solely on the disease of schizophrenia might actually be a combination of schizophrenia and prior exposure to herpes simplex virus 1 infection, which reproduces in the brain," says study leader David J. Schretlen, Ph.D., an associate professor in the Department of Psychiatry at Johns Hopkins University School of Medicine.

The research, described in the May Schizophrenia Research, could lead to new ways to treat or prevent the cognitive impairment that typically accompanies this mental illness, including with antiviral drugs, the scientists say.

Doctors have long known that cognitive impairment, including problems with psychomotor speed, concentration, learning, and memory, are prevalent features of schizophrenia, which affects an estimated one percent of the U.S. population. Cognitive deficits often surface months to years before symptoms that are traditionally used to diagnose this disease, such as delusions or hallucinations.

Some previous studies have shown that schizophrenic patients with antibodies to herpes simplex virus 1 (HSV-1), the virus that causes cold sores, often have more severe cognitive deficits than patients without these antibodies. Other studies have shown that patients with HSV-1 antibodies have decreased brain volumes compared to patients without the antibodies. However, it has been unclear whether the cognitive deficits are directly related to the decreased brain volume.

To investigate, Schretlen and his colleagues recruited 40 schizophrenic patients from outpatient clinics at the Johns Hopkins and Sheppard Enoch Pratt hospitals in Baltimore, Md. Blood tests showed that 25 of the patients had antibodies for HSV-1 and 15 didn't. The researchers gave all of the patients tests to measure speed of coordination, organizational skills and verbal memory. The patients then underwent MRI brain scans to measure the volume of particular regions of their brains.

As in previous studies, results showed that patients with antibodies to HSV-1 performed significantly worse on the cognitive tests than patients without the antibodies. But expanding on those earlier studies, analysis of the brain scans showed that the same patients who performed poorly on the tests also had reduced brain volume in the anterior cingulate, which controls processing speed and the ability to switch tasks. There was also shrinkage in the cerebellum, which controls motor function.

These results suggest that HSV-1 might be directly causing the cognitive deficits by attacking these brain regions, Schretlen says.

Though the researchers aren't sure why schizophrenia might make brains more vulnerable to a viral assault, Schretlen says the results already suggest new ways of treating the disorder. Data from other studies has shown that antiviral medications can reduce psychiatric symptoms in some patients with schizophrenia. "If we can identify schizophrenic patients with HSV-1 antibodies early on, it might be possible to reduce the risk or the extent of cognitive deficits," he adds.

Other Johns Hopkins researchers who participated in this study include Tracy D. Vannorsdall, Ph.D., Jessica M. Winicki, B.A., Takatoshi Hikida, M.D., Akira Sawa, M.D., Ph.D., Robert H. Yolken, M.D., and Nicola G. Cascella, M.D.

For more information, go to:
http://www.hopkinsmedicine.org/psychiatry/expert_team/faculty/S/Schretlen.html
http://www.hopkinsmedicine.org/psychiatry/specialty_areas/schizophrenia/
http://www.hopkinsmedicine.org/psychiatry/

Christen Brownlee | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>